Astellas Pharma Inc. (TSE:4503, President and CEO: Kenji Yasukawa, Ph.D., “Astellas”) and Seagen Inc. (Nasdaq:SGEN) today announced that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) has confirmed its previously adopted positive opinion, recommending approval of PADCEV™.
TOKYO and BOTHELL, Wash., Feb. 28, 2022 /PRNewswire/ -- Astellas Pharma US, Inc. (TSE:4503, President and CEO: Kenji Yasukawa, Ph.D., “Astellas”) and Seagen Inc. (Nasdaq:SGEN) today announced that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) has confirmed its previously adopted positive opinion, recommending approval of PADCEV™ (enfortumab vedotin) as monotherapy for the treatment of adult patients with locally advanced or metastatic urothelial cancer who have previously received platinum-containing chemotherapy and a PD-1/L1 inhibitor. The CHMP initially adopted a positive opinion of enfortumab vedotin on December 16, 2021, providing its recommendation to the European Commission (EC) for a final decision. During the EC’s decision-making process, further safety information was brought to the attention of the CHMP. Following a request from the EC and taking into account the latest information, the CHMP re-adopted its positive opinion.1 If approved by the EC, enfortumab vedotin will be the first antibody-drug conjugate authorized in the European Union for people living with advanced urothelial cancer. The positive opinion from the CHMP will now be reviewed by the EC. EC decisions are valid in the European Union Member States, as well as Iceland, Norway and Liechtenstein.2 About Urothelial Cancer About Enfortumab Vedotin PADCEV (enfortumab vedotin-ejfv) U.S. Indication & Important Safety Information BOXED WARNING: SERIOUS SKIN REACTIONS
U.S. Indication PADCEV® is indicated for the treatment of adult patients with locally advanced or metastatic urothelial cancer (mUC) who:
Important Safety Information Warnings and Precautions Skin reactions Severe cutaneous adverse reactions, including fatal cases of SJS or TEN, occurred in patients treated with PADCEV. SJS and TEN occurred predominantly during the first cycle of treatment but may occur later. Skin reactions occurred in 55% of the 680 patients treated with PADCEV in clinical trials. Twenty-three percent (23%) of patients had maculo-papular rash and 33% had pruritus. Grade 3-4 skin reactions occurred in 13% of patients, including maculo-papular rash, rash erythematous, rash or drug eruption, symmetrical drug-related intertriginous and flexural exanthema (SDRIFE), dermatitis bullous, dermatitis exfoliative, and palmar-plantar erythrodysesthesia. In clinical trials, the median time to onset of severe skin reactions was 0.6 months (range: 0.1 to 6.4). Among patients experiencing a skin reaction leading to dose interruption who then restarted PADCEV (n=59), 24% of patients restarting at the same dose and 16% of patients restarting at a reduced dose experienced recurrent severe skin reactions. Skin reactions led to discontinuation of PADCEV in 2.6% of patients. Monitor patients closely throughout treatment for skin reactions. Consider topical corticosteroids and antihistamines, as clinically indicated. Withhold PADCEV and refer for specialized care for suspected SJS or TEN or for severe (Grade 3) skin reactions. Permanently discontinue PADCEV in patients with confirmed SJS or TEN, or for Grade 4 or recurrent Grade 3 skin reactions. Hyperglycemia and diabetic ketoacidosis (DKA), including fatal events, occurred in patients with and without pre-existing diabetes mellitus, treated with PADCEV. Patients with baseline hemoglobin A1C ≥8% were excluded from clinical trials. In clinical trials, 14% of the 680 patients treated with PADCEV developed hyperglycemia; 7% of patients developed Grade 3-4 hyperglycemia. The incidence of Grade 3-4 hyperglycemia increased consistently in patients with higher body mass index and in patients with higher baseline A1C. Five percent (5%) of patients required initiation of insulin therapy for treatment of hyperglycemia. The median time to onset of hyperglycemia was 0.6 months (range: 0.1 to 20.3). Hyperglycemia led to discontinuation of PADCEV in 0.6% of patients. Closely monitor blood glucose levels in patients with, or at risk for, diabetes mellitus or hyperglycemia. If blood glucose is elevated (>250 mg/dL), withhold PADCEV. Pneumonitis Severe, life-threatening or fatal pneumonitis occurred in patients treated with PADCEV. In clinical trials, 3.1% of the 680 patients treated with PADCEV had pneumonitis of any grade and 0.7% had Grade 3-4. In clinical trials, the median time to onset of pneumonitis was 2.9 months (range: 0.6 to 6). Monitor patients for signs and symptoms indicative of pneumonitis, such as hypoxia, cough, dyspnea or interstitial infiltrates on radiologic exams. Evaluate and exclude infectious, neoplastic and other causes for such signs and symptoms through appropriate investigations. Withhold PADCEV for patients who develop persistent or recurrent Grade 2 pneumonitis and consider dose reduction. Permanently discontinue PADCEV in all patients with Grade 3 or 4 pneumonitis. Peripheral neuropathy (PN) occurred in 52% of the 680 patients treated with PADCEV in clinical trials, including 39% with sensory neuropathy, 7% with muscular weakness and 6% with motor neuropathy; 4% experienced Grade 3-4 reactions. PN occurred in patients treated with PADCEV with or without preexisting PN. The median time to onset of Grade ≥2 PN was 4.6 months (range: 0.1 to 15.8 months). Neuropathy led to treatment discontinuation in 5% of patients. Monitor patients for symptoms of new or worsening peripheral neuropathy and consider dose interruption or dose reduction of PADCEV when PN occurs. Permanently discontinue PADCEV in patients who develop Grade ≥3 PN. Ocular disorders were reported in 40% of the 384 patients treated with PADCEV in clinical trials in which ophthalmologic exams were scheduled. The majority of these events involved the cornea and included events associated with dry eye such as keratitis, blurred vision, increased lacrimation, conjunctivitis, limbal stem cell deficiency, and keratopathy. Dry eye symptoms occurred in 34% of patients, and blurred vision occurred in 13% of patients, during treatment with PADCEV. The median time to onset to symptomatic ocular disorder was 1.6 months (range: 0 to 19.1 months). Monitor patients for ocular disorders. Consider artificial tears for prophylaxis of dry eyes and ophthalmologic evaluation if ocular symptoms occur or do not resolve. Consider treatment with ophthalmic topical steroids, if indicated after an ophthalmic exam. Consider dose interruption or dose reduction of PADCEV for symptomatic ocular disorders. Infusion site extravasation Skin and soft tissue reactions secondary to extravasation have been observed after administration of PADCEV. Of the 680 patients, 1.6% of patients experienced skin and soft tissue reactions, including 0.3% who experienced Grade 3-4 reactions. Reactions may be delayed. Erythema, swelling, increased temperature, and pain worsened until 2-7 days after extravasation and resolved within 1-4 weeks of peak. Two patients (0.3%) developed extravasation reactions with secondary cellulitis, bullae, or exfoliation. Ensure adequate venous access prior to starting PADCEV and monitor for possible extravasation during administration. If extravasation occurs, stop the infusion and monitor for adverse reactions. Embryo-fetal toxicity PADCEV can cause fetal harm when administered to a pregnant woman. Advise patients of the potential risk to the fetus. Advise female patients of reproductive potential to use effective contraception during PADCEV treatment and for 2 months after the last dose. Advise male patients with female partners of reproductive potential to use effective contraception during treatment with PADCEV and for 4 months after the last dose. Adverse Reactions Most Common Adverse Reactions, Including Laboratory Abnormalities (≥20%) EV-301 Study: 296 patients previously treated with a PD-1/L1 inhibitor and platinum-based chemotherapy. Serious adverse reactions occurred in 47% of patients treated with PADCEV; the most common (≥2%) were urinary tract infection, acute kidney injury (7% each) and pneumonia (5%). Fatal adverse reactions occurred in 3% of patients, including multiorgan dysfunction (1.0%), hepatic dysfunction, septic shock, hyperglycemia, pneumonitis and pelvic abscess (0.3% each). Adverse reactions leading to discontinuation occurred in 17% of patients; the most common (≥2%) were PN (5%) and rash (4%). Adverse reactions leading to dose interruption occurred in 61% of patients; the most common (≥4%) were PN (23%), rash (11%) and fatigue (9%). Adverse reactions leading to dose reduction occurred in 34% of patients; the most common (≥2%) were PN (10%), rash (8%), decreased appetite and fatigue (3% each). Clinically relevant adverse reactions (<15%) include vomiting (14%), AST increased (12%), hyperglycemia (10%), ALT increased (9%), pneumonitis (3%) and infusion site extravasation (0.7%). EV-201, Cohort 2 Study: 89 patients previously treated with a PD-1/L1 inhibitor and not eligible for platinum-based chemotherapy. Serious adverse reactions occurred in 39% of patients treated with PADCEV; the most common (≥3%) were pneumonia, sepsis and diarrhea (5% each). Fatal adverse reactions occurred in 8% of patients, including acute kidney injury (2.2%), metabolic acidosis, sepsis, multiorgan dysfunction, pneumonia and pneumonitis (1.1% each). Adverse reactions leading to discontinuation occurred in 20% of patients; the most common (≥2%) was PN (7%). Adverse reactions leading to dose interruption occurred in 60% of patients; the most common (≥3%) were PN (19%), rash (9%), fatigue (8%), diarrhea (5%), AST increased and hyperglycemia (3% each). Adverse reactions leading to dose reduction occurred in 49% of patients; the most common (≥3%) were PN (19%), rash (11%) and fatigue (7%). Clinically relevant adverse reactions (<15%) include vomiting (13%), AST increased (12%), lipase increased (11%), ALT increased (10%), pneumonitis (4%) and infusion site extravasation (1%). Drug Interactions Effects of other drugs on PADCEV (Dual P-gp and Strong CYP3A4 Inhibitors) Concomitant use with a dual P-gp and strong CYP3A4 inhibitors may increase unconjugated monomethyl auristatin E exposure, which may increase the incidence or severity of PADCEV toxicities. Closely monitor patients for signs of toxicity when PADCEV is given concomitantly with dual P-gp and strong CYP3A4 inhibitors. Specific Populations Hepatic impairment Avoid the use of PADCEV in patients with moderate or severe hepatic impairment. For more information, please see the full Prescribing Information including BOXED WARNING for PADCEV here. About Astellas About Seagen About the Astellas and Seagen Collaboration Astellas Cautionary Notes Information about pharmaceutical products (including products currently in development), which is included in this press release is not intended to constitute an advertisement or medical advice. Seagen Forward-Looking Statements References 1 European Medicines Agency. Meeting highlights from the Committee for Medicinal Products for Human Use (CHMP) February 2022. Available at: https://www.ema.europa.eu/en/committees/chmp/chmp-agendas-minutes-highlights. Accessed February 25, 2022.
View original content to download multimedia:https://www.prnewswire.com/news-releases/astellas-and-seagen-announce-chmp-confirms-positive-opinion-for-padcev-enfortumab-vedotin-in-locally-advanced-or-metastatic-urothelial-cancer-301491143.html SOURCE Astellas Pharma Inc. | ||
Company Codes: Tokyo:4503, OTC-PINK:ALPMY, NASDAQ-NMS:SGEN |