UNC Plant Researchers Discover Proteins Interact To Form Hair-Trigger Protection Against Invaders

Experimenting with Arabidopsis, a fast-growing cousin of the humble mustard plant, scientists at the University of North Carolina at Chapel Hill got a big surprise while investigating how plants respond to attacks from disease organisms such as bacteria and viruses. "Contrary to what we thought we'd find, our experiments showed that at least three different proteins work in concert with one another in tug-of war or teeter totter-fashion to keep plant defenses in a state of constant readiness," said Dr. Jeffrey L. Dangl, John N. Couch professor of biology in UNC's College of Arts and Sciences. Previously, he and others believed that the proteins -- RAR1, SGT1 and HSP90 -- were required for what is called signal transduction -- relaying like Paul Revere the message that an enemy had arrived, Dangl said. Instead, they are needed to form an even earlier disease surveillance antenna or hair trigger. When disease invaders pull that trigger, infected plants cells quickly commit suicide, often preventing the invader from destroying the entire plant. The new discovery appears to be a universal mechanism for defense by all plants against not only bacteria and viruses, but also parasitic fungi, insects and worms, he said.

Back to news