PHILADELPHIA and WHITEHOUSE STATION, N.J., Nov. 26 /PRNewswire/ -- GlaxoSmithKline, Philadelphia, PA, USA (GSK) and Merck & Co., Inc., Whitehouse Station, NJ, USA (Merck), announced today that they have entered into an agreement for over-the-counter (OTC) marketing rights for MEVACOR(R) (lovastatin). Under the agreement, GSK will have exclusive rights to market non-prescription MEVACOR in the United States. Terms of the agreement are confidential but include milestone and royalty payments from GSK to Merck.
MEVACOR was introduced in the United States in 1987 by Merck as the first in a class of cholesterol-reducing medicines known as “statins”. The U.S. patent for MEVACOR expired in 2001.
Commenting on the agreement, JP Garnier, chief executive officer, GlaxoSmithKline said, “This new partnership with Merck will enable GSK to address the important public health issue of high cholesterol and help patients better manage their health. OTC Mevacor will be a dynamic new addition to our fast-growing over-the-counter business and is further evidence of GSK’s ability to partner in new OTC switch opportunities.”
“With MEVACOR, Merck pioneered the development of cholesterol-lowering medicines known as “statins” which are recognized worldwide and remain the standard of care today,” said Richard T. Clark, chief executive officer, Merck. “We are pleased to be able to partner with GSK as a way to bring MEVACOR directly to consumers in the United States.”
Application for OTC MEVACOR to be reviewed by FDA
The new drug application (NDA) for OTC MEVACOR will be reviewed by the U.S. Food and Drug Administration (FDA) in a joint meeting of the Nonprescription Drugs Advisory Committee (NDAC) and the Endocrinologic and Metabolic Drugs Advisory Committee (EMDAC) on December 13. The NDA, filed by Merck, is seeking approval of OTC MEVACOR 20 mg taken once daily to help lower cholesterol. OTC MEVACOR 20 mg is proposed for use in women age 55 and older and men age 45 and older with moderately elevated cholesterol and one or more heart disease risk factors.
About prescription MEVACOR
MEVACOR is a prescription medicine that is approved in the United States for the treatment of elevated cholesterol levels that lifestyle changes alone cannot control and to reduce the risk of first heart attack, unstable angina and coronary revascularization procedures in healthy men and women with average or moderately elevated cholesterol levels.
According to the prescribing information, MEVACOR should not be used by anyone allergic to any of its components, people with liver disease, or by women who are pregnant, breast-feeding or likely to become pregnant. It is recommended that liver function tests be performed in all patients prior to daily use of MEVACOR 40 mg or more.
Muscle pain or weakness in patients taking prescription MEVACOR should be reported to a doctor because these could be signs of a serious side effect. Patients should tell their doctors about other medications they are taking in order to avoid possible drug interactions.
The most common adverse events reported with MEVACOR 20 mg taken once a day were diarrhea, flatulence, headache and myalgia.
About GSK
GlaxoSmithKline is one of the world’s leading research-based pharmaceutical and healthcare companies and is committed to improving the quality of human life by enabling people to do more, feel better and live longer. For more information, visit GlaxoSmithKline at www.gsk.com.
Nicorette, NicoDerm CQ and alli trademarks are either owned by and/or licensed to GSK or associated companies. Xenical is a registered trademark of the Roche Group.
About GSK Consumer Healthcare
OTC MEVACOR would be marketed in the United States by GSK Consumer Healthcare, a GSK division with a well-established record of bringing informed access to OTC medicines.
In 1996, GSK Consumer Healthcare launched the first OTC nicotine replacement therapies, Nicorette and NicoDerm CQ, together with an innovative Committed Quitters behavioral support program. Through increased access to GSK’s smoking cessation brands and support, more than five million adults in the United States have quit smoking.
In 2004, GSK Consumer Healthcare acquired the OTC marketing rights to orlistat in the United States from the Roche Group (orlistat 120 mg is marketed as the prescription product Xenical(R) by Roche). In June 2007, GSK Consumer Healthcare launched alli in the United States, the first FDA-approved OTC weight control medicine. alli (orlistat 60mg) provides overweight adults a proven weight loss medicine and a comprehensive, tailored, behavioral support program.
GSK’s education programs provide consumers with information and the tools to support them through the behavioral modifications that are essential for their success with OTC medicines and that require long-term lifestyle changes.
GSK forward-looking statement
Under the safe harbor provisions of the U.S. Private Securities Litigation Reform Act of 1995, GSK cautions investors that any forward-looking statements or projections made by GSK, including those made in this announcement, are subject to risks and uncertainties that may cause actual results to differ materially from those projected. Factors that may affect GSK’s operations are described under ‘Risk Factors’ in the Operating and Financial Review and Prospects in the company’s Annual Report on Form 20-F for 2006.
About Merck
Merck & Co., Inc. is a global research-driven pharmaceutical company dedicated to putting patients first. Established in 1891, Merck currently discovers, develops, manufactures and markets vaccines and medicines to address unmet medical needs. The Company devotes extensive efforts to increase access to medicines through far-reaching programs that not only donate Merck medicines but help deliver them to the people who need them. Merck also publishes unbiased health information as a not-for-profit service. For more information, visit http://www.merck.com.
Merck forward-looking statement
This press release contains “forward-looking statements” as that term is defined in the Private Securities Litigation Reform Act of 1995. These statements are based on management’s current expectations and involve risks and uncertainties, which may cause results to differ materially from those set forth in the statements. The forward-looking statements may include statements regarding product development, product potential or financial performance. No forward-looking statement can be guaranteed and actual results may differ materially from those projected. Merck undertakes no obligation to publicly update any forward-looking statement, whether as a result of new information, future events, or otherwise. Forward-looking statements in this press release should be evaluated together with the many uncertainties that affect Merck’s business, particularly those mentioned in the risk factors and cautionary statements in Item 1A of Merck’s Form 10-K for the year ended Dec. 31, 2006, and in its periodic reports on Form 10-Q and Form 8-K, which the Company incorporates by reference.
DESCRIPTION
MEVACOR* (Lovastatin) is a cholesterol lowering agent isolated from a strain of Aspergillus terreus. After oral ingestion, lovastatin, which is an inactive lactone, is hydrolyzed to the corresponding beta-hydroxyacid form. This is a principal metabolite and an inhibitor of 3-hydroxy-3-methylglutaryl- coenzyme A (HMG-CoA) reductase. This enzyme catalyzes the conversion of HMG- CoA to mevalonate, which is an early and rate limiting step in the biosynthesis of cholesterol.
Lovastatin is [1S-[1alpha(R*),3alpha,7beta,8beta (2S*,4S*), 8abeta]]- 1,2,3,7, 8,8a-hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4-hydroxy-6-oxo-2H- pyran-2-yl)ethyl]-1-naphthalenyl 2-methylbutanoate. The empirical formula of lovastatin is C24H36O5 and its molecular weight is 404.55.
Lovastatin is a white, nonhygroscopic crystalline powder that is insoluble in water and sparingly soluble in ethanol, methanol, and acetonitrile.
Tablets MEVACOR are supplied as 20 mg and 40 mg tablets for oral administration. In addition to the active ingredient lovastatin, each tablet contains the following inactive ingredients: cellulose, lactose, magnesium stearate, and starch. Butylated hydroxyanisole (BHA) is added as a preservative. Tablets MEVACOR 20 mg also contain FD&C Blue 2 aluminum lake. Tablets MEVACOR 40 mg also contain D&C Yellow 10 aluminum lake and FD&C Blue 2 aluminum lake.
CLINICAL PHARMACOLOGY
The involvement of low-density lipoprotein cholesterol (LDL-C) in atherogenesis has been well-documented in clinical and pathological studies, as well as in many animal experiments. Epidemiological and clinical studies have established that high LDL-C and low high-density lipoprotein cholesterol (HDL-C) are both associated with coronary heart disease. However, the risk of developing coronary heart disease is continuous and graded over the range of cholesterol levels and many coronary events do occur in patients with total cholesterol (total-C) and LDL-C in the lower end of this range.
MEVACOR has been shown to reduce both normal and elevated LDL-C concentrations. LDL is formed from very low-density lipoprotein (VLDL) and is catabolized predominantly by the high affinity LDL receptor. The mechanism of the LDL-lowering effect of MEVACOR may involve both reduction of VLDL-C concentration, and induction of the LDL receptor, leading to reduced production and/or increased catabolism of LDL-C. Apolipoprotein B also falls substantially during treatment with MEVACOR. Since each LDL particle contains one molecule of apolipoprotein B, and since little apolipoprotein B is found in other lipoproteins, this strongly suggests that MEVACOR does not merely cause cholesterol to be lost from LDL, but also reduces the concentration of circulating LDL particles. In addition, MEVACOR can produce increases of variable magnitude in HDL-C, and modestly reduces VLDL-C and plasma triglycerides (TG) (see Tables I-III under Clinical Studies). The effects of MEVACOR on Lp(a), fibrinogen, and certain other independent biochemical risk markers for coronary heart disease are unknown.
MEVACOR is a specific inhibitor of HMG-CoA reductase, the enzyme which catalyzes the conversion of HMG-CoA to mevalonate. The conversion of HMG-CoA to mevalonate is an early step in the biosynthetic pathway for cholesterol.
Pharmacokinetics
Lovastatin is a lactone which is readily hydrolyzed in vivo to the corresponding beta-hydroxyacid, a potent inhibitor of HMG-CoA reductase. Inhibition of HMG-CoA reductase is the basis for an assay in pharmacokinetic studies of the beta-hydroxyacid metabolites (active inhibitors) and, following base hydrolysis, active plus latent inhibitors (total inhibitors) in plasma following administration of lovastatin.
Following an oral dose of 14C-labeled lovastatin in man, 10% of the dose was excreted in urine and 83% in feces. The latter represents absorbed drug equivalents excreted in bile, as well as any unabsorbed drug. Plasma concentrations of total radioactivity (lovastatin plus 14C-metabolites) peaked at 2 hours and declined rapidly to about 10% of peak by 24 hours postdose. Absorption of lovastatin, estimated relative to an intravenous reference dose, in each of four animal species tested, averaged about 30% of an oral dose. In animal studies, after oral dosing, lovastatin had high selectivity for the liver, where it achieved substantially higher concentrations than in non- target tissues. Lovastatin undergoes extensive first-pass extraction in the liver, its primary site of action, with subsequent excretion of drug equivalents in the bile. As a consequence of extensive hepatic extraction of lovastatin, the availability of drug to the general circulation is low and variable. In a single dose study in four hypercholesterolemic patients, it was estimated that less than 5% of an oral dose of lovastatin reaches the general circulation as active inhibitors. Following administration of lovastatin tablets the coefficient of variation, based on between-subject variability, was approximately 40% for the area under the curve (AUC) of total inhibitory activity in the general circulation.
Both lovastatin and its beta-hydroxyacid metabolite are highly bound (>95%) to human plasma proteins. Animal studies demonstrated that lovastatin crosses the blood-brain and placental barriers.
The major active metabolites present in human plasma are the beta- hydroxyacid of lovastatin, its 6'-hydroxy derivative, and two additional metabolites. Peak plasma concentrations of both active and total inhibitors were attained within 2 to 4 hours of dose administration. While the recommended therapeutic dose range is 10 to 80 mg/day, linearity of inhibitory activity in the general circulation was established by a single dose study employing lovastatin tablet dosages from 60 to as high as 120 mg. With a once- a-day dosing regimen, plasma concentrations of total inhibitors over a dosing interval achieved a steady state between the second and third days of therapy and were about 1.5 times those following a single dose. When lovastatin was given under fasting conditions, plasma concentrations of total inhibitors were on average about two-thirds those found when lovastatin was administered immediately after a standard test meal.
In a study of patients with severe renal insufficiency (creatinine clearance 10-30 mL/min), the plasma concentrations of total inhibitors after a single dose of lovastatin were approximately two-fold higher than those in healthy volunteers.
In a study including 16 elderly patients between 70-78 years of age who received MEVACOR 80 mg/day, the mean plasma level of HMG-CoA reductase inhibitory activity was increased approximately 45% compared with 18 patients between 18-30 years of age (see PRECAUTIONS, Geriatric Use).
Although the mechanism is not fully understood, cyclosporine has been shown to increase the AUC of HMG-CoA reductase inhibitors. The increase in AUC for lovastatin and lovastatin acid is presumably due, in part, to inhibition of CYP3A4.
The risk of myopathy is increased by high levels of HMG-CoA reductase inhibitory activity in plasma. Potent inhibitors of CYP3A4 can raise the plasma levels of HMG-CoA reductase inhibitory activity and increase the risk of myopathy (see WARNINGS, Myopathy/Rhabdomyolysis and PRECAUTIONS, Drug Interactions).
Lovastatin is a substrate for cytochrome P450 isoform 3A4 (CYP3A4) (see PRECAUTIONS, Drug Interactions). Grapefruit juice contains one or more components that inhibit CYP3A4 and can increase the plasma concentrations of drugs metabolized by CYP3A4. In one study**, 10 subjects consumed 200 mL of double-strength grapefruit juice (one can of frozen concentrate diluted with one rather than 3 cans of water) three times daily for 2 days and an additional 200 mL double-strength grapefruit juice together with and 30 and 90 minutes following a single dose of 80 mg lovastatin on the third day. This regimen of grapefruit juice resulted in a mean increase in the serum concentration of lovastatin and its beta-hydroxyacid metabolite (as measured by the area under the concentration-time curve) of 15-fold and 5-fold, respectively [as measured using a chemical assay -- high performance liquid chromatography.] In a second study, 15 subjects consumed one 8 oz glass of single-strength grapefruit juice (one can of frozen concentrate diluted with 3 cans of water) with breakfast for 3 consecutive days and a single dose of 40 mg lovastatin in the evening of the third day. This regimen of grapefruit juice resulted in a mean increase in the plasma concentration (as measured by the area under the concentration-time curve) of active and total HMG-CoA reductase inhibitory activity [using an enzyme inhibition assay both before (for active inhibitors) and after (for total inhibitors) base hydrolysis] of 1.34-fold and 1.36-fold, respectively, and of lovastatin and its beta- hydroxyacid metabolite [measured using a chemical assay -- liquid chromatography/tandem mass spectrometry -- different from that used in the first** study] of 1.94-fold and 1.57-fold, respectively. The effect of amounts of grapefruit juice between those used in these two studies on lovastatin pharmacokinetics has not been studied.
Clinical Studies in Adults
MEVACOR has been shown to be highly effective in reducing total-C and LDL- C in heterozygous familial and non-familial forms of primary hypercholesterolemia and in mixed hyperlipidemia. A marked response was seen within 2 weeks, and the maximum therapeutic response occurred within 4-6 weeks. The response was maintained during continuation of therapy. Single daily doses given in the evening were more effective than the same dose given in the morning, perhaps because cholesterol is synthesized mainly at night.
In multicenter, double-blind studies in patients with familial or non- familial hypercholesterolemia, MEVACOR, administered in doses ranging from 10 mg q.p.m. to 40 mg b.i.d., was compared to placebo. MEVACOR consistently and significantly decreased plasma total-C, LDL-C, total-C/HDL-C ratio and LDL- C/HDL-C ratio. In addition, MEVACOR produced increases of variable magnitude in HDL-C, and modestly decreased VLDL-C and plasma TG (see Tables I through III for dose response results).
MEVACOR was studied in controlled trials in hypercholesterolemic patients with well-controlled non-insulin dependent diabetes mellitus with normal renal function. The effect of MEVACOR on lipids and lipoproteins and the safety profile of MEVACOR were similar to that demonstrated in studies in nondiabetics. MEVACOR had no clinically important effect on glycemic control or on the dose requirement of oral hypoglycemic agents.
Expanded Clinical Evaluation of Lovastatin (EXCEL) Study
Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS)
The Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS), a double-blind, randomized, placebo-controlled, primary prevention study, demonstrated that treatment with MEVACOR decreased the rate of acute major coronary events (composite endpoint of myocardial infarction, unstable angina, and sudden cardiac death) compared with placebo during a median of 5.1 years of follow-up. Participants were middle-aged and elderly men (ages 45-73) and women (ages 55-73) without symptomatic cardiovascular disease with average to moderately elevated total-C and LDL-C, below average HDL-C, and who were at high risk based on elevated total-C/HDL-C. In addition to age, 63% of the participants had at least one other risk factor (baseline HDL-C <35 mg/dL, hypertension, family history, smoking and diabetes).
AFCAPS/TexCAPS enrolled 6,605 participants (5,608 men, 997 women) based on the following lipid entry criteria: total-C range of 180-264 mg/dL, LDL-C range of 130-190 mg/dL, HDL-C of Less Than or Equal To 45 mg/dL for men and Less Than or Equal To 47 mg/dL for women, and TG of Less Than or Equal To 400 mg/dL. Participants were treated with standard care, including diet, and either MEVACOR 20-40 mg daily (n= 3,304) or placebo (n= 3,301). Approximately 50% of the participants treated with MEVACOR were titrated to 40 mg daily when their LDL-C remained >110 mg/dL at the 20-mg starting dose.
MEVACOR reduced the risk of a first acute major coronary event, the primary efficacy endpoint, by 37% (MEVACOR 3.5%, placebo 5.5%; p<0.001; Figure 1). A first acute major coronary event was defined as myocardial infarction (54 participants on MEVACOR, 94 on placebo) or unstable angina (54 vs. 80) or sudden cardiac death (8 vs. 9). Furthermore, among the secondary endpoints, MEVACOR reduced the risk of unstable angina by 32% (1.8 vs. 2.6%; p=0.023), of myocardial infarction by 40% (1.7 vs. 2.9%; p=0.002), and of undergoing coronary revascularization procedures (e.g., coronary artery bypass grafting or percutaneous transluminal coronary angioplasty) by 33% (3.2 vs. 4.8%; p=0.001). Trends in risk reduction associated with treatment with MEVACOR were consistent across men and women, smokers and non-smokers, hypertensives and non-hypertensives, and older and younger participants. Participants with Greater Than or Equal To 2 risk factors had risk reductions (RR) in both acute major coronary events (RR 43%) and coronary revascularization procedures (RR 37%). Because there were too few events among those participants with age as their only risk factor in this study, the effect of MEVACOR on outcomes could not be adequately assessed in this subgroup.
Atherosclerosis
In the Canadian Coronary Atherosclerosis Intervention Trial (CCAIT), the effect of therapy with lovastatin on coronary atherosclerosis was assessed by coronary angiography in hyperlipidemic patients. In the randomized, double- blind, controlled clinical trial, patients were treated with conventional measures (usually diet and 325 mg of aspirin every other day) and either lovastatin 20-80 mg daily or placebo. Angiograms were evaluated at baseline and at two years by computerized quantitative coronary angiography (QCA). Lovastatin significantly slowed the progression of lesions as measured by the mean change per-patient in minimum lumen diameter (the primary endpoint) and percent diameter stenosis, and decreased the proportions of patients categorized with disease progression (33% vs. 50%) and with new lesions (16% vs. 32%).
In a similarly designed trial, the Monitored Atherosclerosis Regression Study (MARS), patients were treated with diet and either lovastatin 80 mg daily or placebo. No statistically significant difference between lovastatin and placebo was seen for the primary endpoint (mean change per patient in percent diameter stenosis of all lesions), or for most secondary QCA endpoints. Visual assessment by angiographers who formed a consensus opinion of overall angiographic change (Global Change Score) was also a secondary endpoint. By this endpoint, significant slowing of disease was seen, with regression in 23% of patients treated with lovastatin compared to 11% of placebo patients.
In the Familial Atherosclerosis Treatment Study (FATS), either lovastatin or niacin in combination with a bile acid sequestrant for 2.5 years in hyperlipidemic subjects significantly reduced the frequency of progression and increased the frequency of regression of coronary atherosclerotic lesions by QCA compared to diet and, in some cases, low-dose resin.
The effect of lovastatin on the progression of atherosclerosis in the coronary arteries has been corroborated by similar findings in another vasculature. In the Asymptomatic Carotid Artery Progression Study (ACAPS), the effect of therapy with lovastatin on carotid atherosclerosis was assessed by B-mode ultrasonography in hyperlipidemic patients with early carotid lesions and without known coronary heart disease at baseline. In this double-blind, controlled clinical trial, 919 patients were randomized in a 2 x 2 factorial design to placebo, lovastatin 10-40 mg daily and/or warfarin. Ultrasonograms of the carotid walls were used to determine the change per patient from baseline to three years in mean maximum intimal-medial thickness (IMT) of 12 measured segments. There was a significant regression of carotid lesions in patients receiving lovastatin alone compared to those receiving placebo alone (p=0.001). The predictive value of changes in IMT for stroke has not yet been established. In the lovastatin group there was a significant reduction in the number of patients with major cardiovascular events relative to the placebo group (5 vs. 14) and a significant reduction in all-cause mortality (1 vs. 8).
Eye
There was a high prevalence of baseline lenticular opacities in the patient population included in the early clinical trials with lovastatin. During these trials the appearance of new opacities was noted in both the lovastatin and placebo groups. There was no clinically significant change in visual acuity in the patients who had new opacities reported nor was any patient, including those with opacities noted at baseline, discontinued from therapy because of a decrease in visual acuity.
A three-year, double-blind, placebo-controlled study in hypercholesterolemic patients to assess the effect of lovastatin on the human lens demonstrated that there were no clinically or statistically significant differences between the lovastatin and placebo groups in the incidence, type or progression of lenticular opacities. There are no controlled clinical data assessing the lens available for treatment beyond three years.
Clinical Studies in Adolescent Patients
Efficacy of Lovastatin in Adolescent Boys with Heterozygous Familial Hypercholesterolemia
In a double-blind, placebo-controlled study, 132 boys 10-17 years of age (mean age 12.7 yrs) with heterozygous familial hypercholesterolemia (heFH) were randomized to lovastatin (n=67) or placebo (n=65) for 48 weeks. Inclusion in the study required a baseline LDL-C level between 189 and 500 mg/dL and at least one parent with an LDL-C level >189 mg/dL. The mean baseline LDL-C value was 253.1 mg/dL (range: 171-379 mg/dL) in the MEVACOR group compared to 248.2 mg/dL (range: 158.5-413.5 mg/dL) in the placebo group. The dosage of lovastatin (once daily in the evening) was 10 mg for the first 8 weeks, 20 mg for the second 8 weeks, and 40 mg thereafter.
MEVACOR significantly decreased plasma levels of total-C, LDL-C and apolipoprotein B (see Table IV).
The mean achieved LDL-C value was 190.9 mg/dL (range: 108-336 mg/dL) in the MEVACOR group compared to 244.8 mg/dL (range: 135-404 mg/dL) in the placebo group.
Efficacy of Lovastatin in Post-menarchal Girls with Heterozygous Familial Hypercholesterolemia
In a double-blind, placebo-controlled study, 54 girls 10-17 years of age who were at least 1 year post-menarche with heFH were randomized to lovastatin (n=35) or placebo (n=19) for 24 weeks. Inclusion in the study required a baseline LDL-C level of 160-400 mg/dL and a parental history of familial hypercholesterolemia. The mean baseline LDL-C value was 218.3 mg/dL (range: 136.3-363.7 mg/dL) in the MEVACOR group compared to 198.8 mg/dL (range: 151.1-283.1 mg/dL) in the placebo group. The dosage of lovastatin (once daily in the evening) was 20 mg for the first 4 weeks, and 40 mg thereafter.
MEVACOR significantly decreased plasma levels of total-C, LDL-C, and apolipoprotein B (see Table V).
The mean achieved LDL-C value was 154.5 mg/dL (range: 82-286 mg/dL) in the MEVACOR group compared to 203.5 mg/dL (range: 135-304 mg/dL) in the placebo group.
The safety and efficacy of doses above 40 mg daily have not been studied in children. The long-term efficacy of lovastatin therapy in childhood to reduce morbidity and mortality in adulthood has not been established.
INDICATIONS AND USAGE
Therapy with MEVACOR should be a component of multiple risk factor intervention in those individuals with dyslipidemia at risk for atherosclerotic vascular disease. MEVACOR should be used in addition to a diet restricted in saturated fat and cholesterol as part of a treatment strategy to lower total-C and LDL-C to target levels when the response to diet and other nonpharmacological measures alone has been inadequate to reduce risk.
Primary Prevention of Coronary Heart Disease
In individuals without symptomatic cardiovascular disease, average to moderately elevated total-C and LDL-C, and below average HDL-C, MEVACOR is indicated to reduce the risk of:
Coronary Heart Disease
MEVACOR is indicated to slow the progression of coronary atherosclerosis in patients with coronary heart disease as part of a treatment strategy to lower total-C and LDL-C to target levels.
Hypercholesterolemia
Therapy with lipid-altering agents should be a component of multiple risk factor intervention in those individuals at significantly increased risk for atherosclerotic vascular disease due to hypercholesterolemia. MEVACOR is indicated as an adjunct to diet for the reduction of elevated total-C and LDL- C levels in patients with primary hypercholesterolemia (Types IIa and IIb***), when the response to diet restricted in saturated fat and cholesterol and to other nonpharmacological measures alone has been inadequate.
Adolescent Patients with Heterozygous Familial Hypercholesterolemia
MEVACOR is indicated as an adjunct to diet to reduce total-C, LDL-C and apolipoprotein B levels in adolescent boys and girls who are at least one year post-menarche, 10-17 years of age, with heFH if after an adequate trial of diet therapy the following findings are present:
General Recommendations
Prior to initiating therapy with lovastatin, secondary causes for hypercholesterolemia (e.g., poorly controlled diabetes mellitus, hypothyroidism, nephrotic syndrome, dysproteinemias, obstructive liver disease, other drug therapy, alcoholism) should be excluded, and a lipid profile performed to measure total-C, HDL-C, and TG. For patients with TG less than 400 mg/dL (<4.5 mmol/L), LDL-C can be estimated using the following equation:
LDL-C = total-C - [0.2 x (TG) + HDL-C]
For TG levels >400 mg/dL (>4.5 mmol/L), this equation is less accurate and LDL-C concentrations should be determined by ultracentrifugation. In hypertriglyceridemic patients, LDL-C may be low or normal despite elevated total-C. In such cases, MEVACOR is not indicated.
The National Cholesterol Education Program (NCEP) Treatment Guidelines are summarized below:
++ Some authorities recommend use of LDL-lowering drugs in this category if an LDL-C level of <100 mg/dL cannot be achieved by therapeutic lifestyle changes. Others prefer use of drugs that primarily modify triglycerides and HDL-C, e.g., nicotinic acid or fibrate. Clinical judgment also may call for deferring drug therapy in this subcategory.
+++ Almost all people with 0-1 risk factor have a 10-year risk <10%; thus, 10-year risk assessment in people with 0-1 risk factor is not necessary.
After the LDL-C goal has been achieved, if the TG is still Greater Than or Equal To 200 mg/dL, non-HDL-C (total-C minus HDL-C) becomes a secondary target of therapy. Non-HDL-C goals are set 30 mg/dL higher than LDL-C goals for each risk category.
At the time of hospitalization for an acute coronary event, consideration can be given to initiating drug therapy at discharge if the LDL-C is Greater Than or Equal To 130 mg/dL (see NCEP Guidelines above).
Since the goal of treatment is to lower LDL-C, the NCEP recommends that LDL-C levels be used to initiate and assess treatment response. Only if LDL-C levels are not available, should the total-C be used to monitor therapy.
Although MEVACOR may be useful to reduce elevated LDL-C levels in patients with combined hypercholesterolemia and hypertriglyceridemia where hypercholesterolemia is the major abnormality (Type IIb hyperlipoproteinemia), it has not been studied in conditions where the major abnormality is elevation of chylomicrons, VLDL or IDL (i.e., hyperlipoproteinemia types I, III, IV, or V).***
Children treated with lovastatin in adolescence should be re-evaluated in adulthood and appropriate changes made to their cholesterol-lowering regimen to achieve adult goals for LDL-C.
CONTRAINDICATIONS
Hypersensitivity to any component of this medication.
Active liver disease or unexplained persistent elevations of serum transaminases (see WARNINGS).
Pregnancy and lactation (see PRECAUTIONS, Pregnancy and Nursing Mothers). Atherosclerosis is a chronic process and the discontinuation of lipid-lowering drugs during pregnancy should have little impact on the outcome of long-term therapy of primary hypercholesterolemia. Moreover, cholesterol and other products of the cholesterol biosyn