WASHINGTON--(BUSINESS WIRE)--In the emerging field of tissue engineering, scientists encourage cells to grow on carefully designed support scaffolds. The ultimate goal is to create living structures that might one day be used to replace lost or damaged tissue, but the manufacture of appropriately detailed scaffolds presents a significant challenge that has kept most tissue engineering applications confined to the research lab. Now a team of researchers from the Laser Zentrum Hannover (LZH) eV Institute in Hannover, Germany, and the Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill and North Carolina State University has modified a manufacturing technique called two-photon polymerization (2PP) to create finely detailed structures such as tissue scaffolds more quickly and efficiently than was previously possible. The new technique, which the team describes in a paper published this week in the Optical Society’s (OSA) open-access journal Biomedical Optics Express, could help pave the way to more wide-spread clinical use of microscale medical devices.