A defect in the action of a newly discovered protein may play a central role in muscular dystrophy, a disease of progressive muscle degeneration with no known cure. Scientists at UCSF’s Ernest Gallo Clinic and Research Center discovered in an animal model of the disease that during periods of intense muscle activity, muscles remain excited too long and degenerate if the protein fails to transport the neurotransmitter acetylcholine away from the nerve-muscle synapse. Muscle degeneration is the hallmark of muscular dystrophy, one of the most common genetic diseases.The study was carried out in the roundworm, C. elegans, an animal which has provided early clues to the role of a number of important molecules in the human nervous system. The researchers expect that the protein, which they showed is an acetylcholine transporter, plays the same role in humans as it does in C. elegans, identifying a potential new route for treatment of muscular dystrophy. The research is being reported in the August 19 issue of the journal Nature.