BioAtla, LLC, a global biotechnology company focused on the development of Conditionally Active Biologic (CAB) antibody therapeutics, congratulates James Allison, Ph.D., for receiving the 2018 Nobel Prize in Physiology or Medicine recognizing his leading role in launching an effective new way to attack cancer by treating the immune system.
SAN DIEGO, /PRNewswire/ -- BioAtla, LLC, a global biotechnology company focused on the development of Conditionally Active Biologic (CAB) antibody therapeutics, congratulates James Allison, Ph.D., for receiving the 2018 Nobel Prize in Physiology or Medicine recognizing his leading role in launching an effective new way to attack cancer by treating the immune system. Dr. Allison and Padmanee Sharma, M.D., Ph.D., both at MD Anderson and leading researchers in the field of immuno-oncology, are scientific advisors to BioAtla. Dr. Allison’s pioneering research in the regulation of T cell responses and strategies for cancer immunotherapy led to the development of the ipilimumab antibody to CTLA-4, the first immune checkpoint blockade therapy approved by the U.S. Food and Drug Administration. “We congratulate Jim for receiving the world’s preeminent award for outstanding discoveries in the field of life sciences and medicine,” said Jay M. Short, Ph.D., Chairman, Chief Executive Officer and co-founder of BioAtla. “As scientific advisors to BioAtla, he and Dr. Sharma provide valuable contributions to the direction and prioritization of our CAB development programs, including our CAB-CTLA4 antibody candidate, and to enhance our decisions and design of combination CAB immunotherapies and CAB bispecifics.” About Dr. Allison Among Dr. Allison’s most notable discoveries in his distinguished career studying the regulation of T cell responses, are the determination of the T cell receptor structure and that CD28 is the costimulatory molecule that allows full activation of naïve T cells and prevents anergy in T cell clones. His lab resolved a major controversy by demonstrating that CTLA-4 inhibits T cell activation by opposing CD28-mediated costimulation and that blockade of CTLA-4 could enhance T cell responses, leading to tumor rejection in animal models, and launched the emerging field of immune checkpoint blockade therapy for cancer. Dr. Allison is a member of the National Academies of Science and Medicine. In addition to recently receiving the Nobel Prize, he received the Lasker-Debakey Clinical Medical Research Award in 2015. About Conditionally Active Biologics (CABs) Studies have shown that cancerous tumors create highly specific conditions at their site that are not present in normal tissue. These cancerous microenvironments are primarily a result of the well understood unique glycolytic metabolism associated with cancer cells, referred to as the Warburg Effect. CAB proteins are designed to deliver their therapeutic payload and/or recruit the immune response in specific and selected locations and conditions within the body and to be active only in the presence of a particular cellular microenvironment. In addition, the activation is designed to be reversible to repeatedly switch ‘on and off’ should the CAB move from a diseased to a normal cellular microenvironment and vice versa. CABs can be developed in a variety of formats including monoclonal antibodies (mAbs), antibody drug conjugates (ADCs), bispecifics, chimeric antigen receptor T cells (CAR-Ts) and combination therapies. About BioAtla, LLC Learn more at www.bioatla.com. Contact: Richard Waldron
View original content to download multimedia:http://www.prnewswire.com/news-releases/bioatla-congratulates-james-allison-phd-for-receiving-nobel-prize-300724711.html SOURCE BioAtla, LLC |