Allele Biotechnology Receives NIH Award To Fund The Development Of Large-Scale Stem Cell Production

SAN DIEGO--(BUSINESS WIRE)--The NIH’s National Heart, Lung, and Blood Institute has awarded Allele Biotechnology and Pharmaceuticals (“Allele”) a Phase 1 SBIR grant to develop a novel manufacturing system to produce stem cell-derived human tissue and cells for clinical therapy. By increasing the scale of production and reducing the cost of manufacturing, Allele is confident that this system will overcome a considerable roadblock for clinical applications of stem cells, which is to produce a sufficient amount of therapeutic material at a manageable cost.

“By developing a recombinant protein-independent, real-time adjusted culture system under this project, we are confident that—as many groundbreaking technologies such as genome sequencing have done—the manufacturing process will mature and the costs will come down to eventually benefit everybody.”

At the core of translating this potentially game-changing technology into medically-beneficial applications is the use of induced pluripotent stem cells (iPSCs), which hold unprecedented promise of providing any type of immune-matched cells of unlimited quantity. Allele has already developed a patented method of reprogramming somatic cells into iPSCs, secured industrial licensees using this technology, and initiated cGMP procedures for clinical applications.

Further moving iPSCs into commercially viable clinical cell therapies still requires overcoming one major barrier: the prohibitive cost of manufacturing iPSC-derived cells, mostly due to the need of expensive clinical-grade growth factors and cytokines. For example, the estimated cost of the growth factors and cytokines needed to produce a typical transfusion of platelets is $87,252.

Ultimately, Allele’s goal is to create clinical-grade iPSCs and control their differentiation into specific cell types at a scale large enough to satisfy the clinical demand.We have been diligently working on removing the use of protein factors through our own proprietary protocols to generate many clinically-relevant cell types, including beta cells, mesenchymal stem cells, neural progenitor cells, oligodendrocytes, liver, and heart cells,” said Dr. Jiwu Wang, Allele’s CEO and the Principle Investigator of the new NIH grant. “By developing a recombinant protein-independent, real-time adjusted culture system under this project, we are confident that—as many groundbreaking technologies such as genome sequencing have done—the manufacturing process will mature and the costs will come down to eventually benefit everybody.”

Allele’s plan gained trust from the NIH scientific review panel, which gave it a near-perfect score. With this funding, Allele’s researchers will move even faster towards the goal of bringing iPSC products to clinical applications. Successful efforts will also likely provide a vehicle for genome-editing technologies such as CRISPR to be delivered into patients.

Contacts

Allele Biotechnology and Pharmaceuticals
Jiwu Wang, 858-587-6645

Back to news