The solving of the human genome sequence was hailed a few years ago as biology’s equivalent to landing a man on the moon -- a mammoth milestone of monumental importance. However, unlike the first moon shot, the real milestone of the human genome project is not a singular event. The genome project’s giant leap for mankind is coming not with a single small step taken on one summer’s night but with thousands of small steps spread out over the course of several years. The importance of solving the human genome and the genomes of other species is that those billions of letters of DNA are deposited into databases and become available to scientists everywhere to conduct post-genomic research. Such research includes annotating the human genome -- matching the DNA codes that hold the secret to human life to the genes, proteins, physiologies, and behaviors that define human life. Such work holds great promise for future medicine, and scientists have been investigating how the genes in the human genome actually contribute to the biology of health and disease. In the last few years, a team of scientists from The Scripps Research Institute and the Genomics Institute of the Novartis Research Foundation (GNF) has been working toward an understanding the biology of circadian rhythms -- the cyclic, clock-like expression of genes in the body. The team, led by Steve Kay, Ph.D., and John Hogenesch, Ph.D., uses a combination of genomic, biochemical, and behavioral approaches, work that recently revealed a “new genetic component of the mammalian clock -- a protein known as “Rora.” This discovery may someday help people with jet lag, shift workers who feel wiped out after working a night shift, and people with more serious sleep disorders, many of which are related to circadian rhythms, say the scientists, who report their findings in the latest issue of the journal Neuron.