Radboud University Nijmegen Medical Centre Applies Nanoparticle Tracking Analysis from NanoSight Limited to Study Molecular Machines  
3/27/2012 9:36:43 AM

Salisbury, UK, 27th March 2012: NanoSight, leading manufacturers of unique nanoparticle characterization technology, report on how the Radboud University Nijmegen is applying nanoparticle tracking analysis for the characterization of self-assembled nanomotors.

The oldest city in the Netherlands has provided the home for the latest exciting development in nanotechnology. Jet-engined nano-size rockets may provide a solution for delivering drug packages in the human body. This is not science fiction; it is science fact! Nature Chemistry has published a paper outlining the latest work of Daniela A. Wilson, Roeland J. M. Nolte and Jan C. M. van Hest from the Institute for Molecules and Materials (IMM), Radboud University, Nijmegen.

Dr Daniela A. Wilson explains the work of the group. "Making a nanomotor has been a dream of many researchers in nanotechnology. From molecular machines to micron size self-propelling rods, our team has used a combination of bottom-up or top-down approaches taking years off synthetic work. We applied self-assembly as a tool just like the pieces of a puzzle. The only difference is that we allowed the building blocks make itself to form 350 nm sized motors. The next step was to prove the concept. Having constructed these sub-micron sized nanomotors, we could not use conventional microscopies to visualize them. For 350 nm size particles, we required a special technique and this is how we have come to be users of the NanoSight technique of nanoparticle tracking analysis, NTA. This tracks the motors one by one (in effect, particle-by-particle). We could even analyze their movement after the addition of their fuel (hydrogen peroxide)."

Dr Wilson continued: "Knowing the particle size was very important to establish the size distribution of our self-assembled nanomotors as well the entrapment of the catalytic particles inside the bowl shape structures. However, even more important for us was the ability to track the movement of the motors in the presence of the fuel. This provided the definitive proof of directed motion resulting from the fast discharge of oxygen."

Prior to using NTA, the IMM group used dynamic light scattering (DLS). While quite powerful to measure size, it did not provide the ability to track individual particles that was essential for this research. Furthermore, it was vital to be able to analyze particle movement in real time. NanoSight uses tracking and scattering information to provide the size of the particles as well as giving information about the purity of its components. Different refractive indexes materials within the same colloidal distribution will give different scattering and therefore the group is able to use that information to assess the purity and distribution of complex mixtures.

To find out about the company and to learn more about particle characterization using NanoSight's unique nanoparticle tracking analysis solutions, visit and register to receive the next issue of NanoTrail, the company's electronic newsletter.

About NanoSight:

NanoSight delivers the world's most versatile and proven multi-parameter nanoparticle analysis in a single instrument.

NanoSight's "Nanoparticle Tracking Analysis" (NTA) detects and visualizes populations of nanoparticles in liquids down to 10nm, dependent on material, and measures the size of each particle from direct observations of diffusion. Additionally, NanoSight measures concentration and a fluorescence mode differentiates suitably-labelled particles within complex background suspensions. Zeta potential measurements assess the surface charge on particles. NTA's particle-by-particle methodology goes beyond traditional light scattering and other ensemble techniques in providing high-resolution particle size distributions and validates data with information-rich video files of the particles moving under Brownian motion.

NanoSight's simultaneous multiparameter characterization matches the demands of complex biological systems, hence its wide application in development of drug delivery systems, of viral vaccines, and in nanotoxicology. This real-time data gives insight into the kinetics of protein aggregation and other time-dependent phenomena in a qualitative and quantitative manner. NanoSight has a growing role in biodiagnostics, being proven in detection and speciation of nanovesicles (exosomes) and microvesicles.

NanoSight has installed more than 400 systems worldwide with users including BASF, GlaxoSmithKline, Merck, Novartis, Pfizer, Proctor and Gamble, Roche and Unilever together with the most eminent universities and research institutes. NanoSight's technology is validated by 300+ third party papers citing NanoSight results, consolidating NanoSight's leadership position in nanoparticle characterization. For more information, visit

For further information:

Please contact NanoSight direct or their marketing agency, Talking Science Limited:

NanoSight Limited

Minton Park

London Road

Amesbury SP4 7RT UK

T +44(0)1980 676060

F +44(0)1980 624703

Talking Science Limited

39 de Bohun Court

Saffron Walden

Essex CB10 2BA UK

T +44(0)1799 521881

M +44(0)7843 012997