BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Immunology - Rheumatology

Selective APRIL Blockade Delays Systemic Lupus Erythematosus in Mouse
Published: Wednesday, February 15, 2012
Author: Bertrand Huard et al.

by Bertrand Huard, Ngoc Lan Tran, Mahdia Benkhoucha, Céline Manzin-Lorenzi, Marie-Laure Santiago-Raber

SLE pathogenesis is complex, but it is now widely accepted that autoantibodies play a key role in the process by forming excessive immune complexes; their deposits within tissues leading to inflammation and functional damages. A proliferation inducing ligand (APRIL) is a member of the tumor necrosis factor (TNF) superfamily mediating antibody-producing plasma cell (PC)-survival that may be involved in the duration of pathogenic autoantibodies in lupus. We found significant increases of APRIL at the mRNA and protein levels in bone marrow but not spleen cells from NZB/W lupus mice, as compared to control mice. Selective antibody-mediated APRIL blockade delays disease development in this model by preventing proteinuria, kidney lesions, and mortality. Notably, this was achieved by decreasing anti-DNA and anti-chromatin autoantibody levels, without any perturbation of B- and T- cell homeostasis. Thus, anti-APRIL treatment may constitute an alternative therapy in SLE highly specific to PCs compared to other B-cell targeting therapies tested in this disease, and likely to be associated with less adverse effects than any anti-inflammatory and immunosuppressant agents previously used.
  More...

 

//-->