BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biotechnology - Critical Care and Emergency Medicine - Infectious Diseases - Microbiology - Molecular Biology

Experimental Meningococcal Sepsis in Congenic Transgenic Mice Expressing Human Transferrin
Published: Thursday, July 21, 2011
Author: Marek Szatanik et al.

by Marek Szatanik, Eva Hong, Corinne Ruckly, Morgan Ledroit, Dario Giorgini, Katarzyna Jopek, Marie-Anne Nicola, Ala-Eddine Deghmane, Muhamed-Kheir Taha

Severe meningococcal sepsis is still of high morbidity and mortality. Its management may be improved by an experimental model allowing better understanding of its pathophysiology. We developed an animal model of meningococcal sepsis in transgenic BALB/c mice expressing human transferrin. We studied experimental meningococcal sepsis in congenic transgenic BALB/c mice expressing human transferrin by transcriptional profiling using microarray analysis of blood and brain samples. Genes encoding acute phase proteins, chemokines and cytokines constituted the largest strongly regulated groups. Dynamic bioluminescence imaging further showed high blood bacterial loads that were further enhanced after a primary viral infection by influenza A virus. Moreover, IL-1 receptor–associated kinase–3 (IRAK-3) was induced in infected mice. IRAK-3 is a negative regulator of Toll-dependant signaling and its induction may impair innate immunity and hence result in an immunocompromised state allowing bacterial survival and systemic spread during sepsis. This new approach should enable detailed analysis of the pathophysiology of meningococcal sepsis and its relationships with flu infection.
  More...