BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Anesthesiology and Pain Management - Biochemistry - Biophysics - Biotechnology - Cardiovascular Disorders - Chemical Biology - Chemistry - Computer Science - Critical Care and Emergency Medicine - Dermatology - Diabetes and Endocrinology - Ecology - Evidence-Based Healthcare - Gastroenterology and Hepatology - Geriatrics - Hematology - Immunology - Infectious Diseases - Mathematics - Mental Health - Microbiology - Molecular Biology - Nephrology - Neurological Disorders - Neuroscience - Non-Clinical Medicine - Nutrition - Obstetrics - Oncology - Ophthalmology - Otolaryngology - Pathology - Pediatrics and Child Health - Pharmacology - Physics - Physiology - Public Health and Epidemiology - Radiology and Medical Imaging - Respiratory Medicine - Rheumatology - Science Policy - Surgery - Urology - Virology - Women's Health

Knowledge-Based Reconstruction of mRNA Transcripts with Short Sequencing Reads for Transcriptome Research
Published: Wednesday, February 01, 2012
Author: Junhee Seok et al.

by Junhee Seok, Weihong Xu, Hui Jiang, Ronald W. Davis, Wenzhong Xiao

While most transcriptome analyses in high-throughput clinical studies focus on gene level expression, the existence of alternative isoforms of gene transcripts is a major source of the diversity in the biological functionalities of the human genome. It is, therefore, essential to annotate isoforms of gene transcripts for genome-wide transcriptome studies. Recently developed mRNA sequencing technology presents an unprecedented opportunity to discover new forms of transcripts, and at the same time brings bioinformatic challenges due to its short read length and incomplete coverage for the transcripts. In this work, we proposed a computational approach to reconstruct new mRNA transcripts from short sequencing reads with reference information of known transcripts in existing databases. The prior knowledge helped to define exon boundaries and fill in the transcript regions not covered by sequencing data. This approach was demonstrated using a deep sequencing data set of human muscle tissue with transcript annotations in RefSeq as prior knowledge. We identified 2,973 junctions, 7,471 exons, and 7,571 transcripts not previously annotated in RefSeq. 73% of these new transcripts found supports from UCSC Known Genes, Ensembl or EST transcript annotations. In addition, the reconstructed transcripts were much longer than those from de novo approaches that assume no prior knowledge. These previously un-annotated transcripts can be integrated with known transcript annotations to improve both the design of microarrays and the follow-up analyses of isoform expression. The overall results demonstrated that incorporating transcript annotations from genomic databases significantly helps the reconstruction of novel transcripts from short sequencing reads for transcriptome research.
  More...