BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Anesthesiology and Pain Management - Biochemistry - Biophysics - Biotechnology - Cardiovascular Disorders - Chemical Biology - Chemistry - Computer Science - Critical Care and Emergency Medicine - Dermatology - Diabetes and Endocrinology - Ecology - Evidence-Based Healthcare - Gastroenterology and Hepatology - Geriatrics - Hematology - Immunology - Infectious Diseases - Mathematics - Mental Health - Microbiology - Molecular Biology - Nephrology - Neurological Disorders - Neuroscience - Non-Clinical Medicine - Nutrition - Obstetrics - Oncology - Ophthalmology - Otolaryngology - Pathology - Pediatrics and Child Health - Pharmacology - Physics - Physiology - Public Health and Epidemiology - Radiology and Medical Imaging - Respiratory Medicine - Rheumatology - Science Policy - Surgery - Urology - Virology - Women's Health

Predicting Target DNA Sequences of DNA-Binding Proteins Based on Unbound Structures
Published: Wednesday, February 01, 2012
Author: Chien-Yu Chen et al.

by Chien-Yu Chen, Ting-Ying Chien, Chih-Kang Lin, Chih-Wei Lin, Yi-Zhong Weng, Darby Tien-Hao Chang

DNA-binding proteins such as transcription factors use DNA-binding domains (DBDs) to bind to specific sequences in the genome to initiate many important biological functions. Accurate prediction of such target sequences, often represented by position weight matrices (PWMs), is an important step to understand many biological processes. Recent studies have shown that knowledge-based potential functions can be applied on protein-DNA co-crystallized structures to generate PWMs that are considerably consistent with experimental data. However, this success has not been extended to DNA-binding proteins lacking co-crystallized structures. This study aims at investigating the possibility of predicting the DNA sequences bound by DNA-binding proteins from the proteins' unbound structures (structures of the unbound state). Given an unbound query protein and a template complex, the proposed method first employs structure alignment to generate synthetic protein-DNA complexes for the query protein. Once a complex is available, an atomic-level knowledge-based potential function is employed to predict PWMs characterizing the sequences to which the query protein can bind. The evaluation of the proposed method is based on seven DNA-binding proteins, which have structures of both DNA-bound and unbound forms for prediction as well as annotated PWMs for validation. Since this work is the first attempt to predict target sequences of DNA-binding proteins from their unbound structures, three types of structural variations that presumably influence the prediction accuracy were examined and discussed. Based on the analyses conducted in this study, the conformational change of proteins upon binding DNA was shown to be the key factor. This study sheds light on the challenge of predicting the target DNA sequences of a protein lacking co-crystallized structures, which encourages more efforts on the structure alignment-based approaches in addition to docking- and homology modeling-based approaches for generating synthetic complexes.
  More...