BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Anesthesiology and Pain Management - Biochemistry - Biophysics - Biotechnology - Cardiovascular Disorders - Chemical Biology - Chemistry - Computer Science - Critical Care and Emergency Medicine - Dermatology - Diabetes and Endocrinology - Ecology - Evidence-Based Healthcare - Gastroenterology and Hepatology - Geriatrics - Hematology - Immunology - Infectious Diseases - Mathematics - Mental Health - Microbiology - Molecular Biology - Nephrology - Neurological Disorders - Neuroscience - Non-Clinical Medicine - Nutrition - Obstetrics - Oncology - Ophthalmology - Otolaryngology - Pathology - Pediatrics and Child Health - Pharmacology - Physics - Physiology - Public Health and Epidemiology - Radiology and Medical Imaging - Respiratory Medicine - Rheumatology - Science Policy - Surgery - Urology - Virology - Women's Health

Metabolic Profiles and cDNA-AFLP Analysis of Salvia miltiorrhiza and Salvia castanea Diel f. tomentosa Stib
Published: Monday, January 30, 2012
Author: Dongfeng Yang et al.

by Dongfeng Yang, Pengda Ma, Xiao Liang, Zongsuo Liang, Meixiang Zhang, Shuang Shen, Hongyun Liu, Yan Liu

Plants of the genus Salvia produce various types of phenolic compounds and tanshinones which are effective for treatment of coronary heart disease. Salvia miltiorrhiza and S. castanea Diels f. tomentosa Stib are two important members of the genus. In this study, metabolic profiles and cDNA-AFLP analysis of four samples were employed to identify novel genes potentially involved in phenolic compounds and tanshinones biosynthesis, including the red roots from the two species and two tanshinone-free roots from S. miltiorrhiza. The results showed that the red roots of S. castanea Diels f. tomentosa Stib produced high contents of rosmarinic acid (21.77 mg/g) and tanshinone IIA (12.60 mg/g), but low content of salvianolic acid B (1.45 mg/g). The red roots of S. miltiorrhiza produced high content of salvianolic acid B (18.69 mg/g), while tanshinones accumulation in this sample was much less than that in S. castanea Diels f. tomentosa Stib. Tanshinones were not detected in the two tanshinone-free samples, which produced high contents of phenolic compounds. A cDNA-AFLP analysis with 128 primer pairs revealed that 2300 transcript derived fragments (TDFs) were differentially expressed among the four samples. About 323 TDFs were sequenced, of which 78 TDFs were annotated with known functions through BLASTX searching the Genbank database and 14 annotated TDFs were assigned into secondary metabolic pathways through searching the KEGGPATHWAY database. The quantitative real-time PCR analysis indicated that the expression of 9 TDFs was positively correlated with accumulation of phenolic compounds and tanshinones. These TDFs additionally showed coordinated transcriptional response with 6 previously-identified genes involved in biosynthesis of tanshinones and phenolic compounds in S. miltiorrhiza hairy roots treated with yeast extract. The sequence data in the present work not only provided us candidate genes involved in phenolic compounds and tanshinones biosynthesis but also gave us further insight into secondary metabolism in Salvia.