BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Anesthesiology and Pain Management - Biochemistry - Oncology - Radiology and Medical Imaging - Surgery

Inhibition of Firefly Luciferase by General Anesthetics: Effect on In Vitro and In Vivo Bioluminescence Imaging
Published: Tuesday, January 10, 2012
Author: Marleen Keyaerts et al.

by Marleen Keyaerts, Isabel Remory, Vicky Caveliers, Karine Breckpot, Tomas J. Bos, Jan Poelaert, Axel Bossuyt, Tony Lahoutte

Bioluminescence imaging is routinely performed in anesthetized mice. Often isoflurane anesthesia is used because of its ease of use and fast induction/recovery. However, general anesthetics have been described as important inhibitors of the luciferase enzyme reaction.

Aim

To investigate frequently used mouse anesthetics for their direct effect on the luciferase reaction, both in vitro and in vivo.

Materials and Methods

isoflurane, sevoflurane, desflurane, ketamine, xylazine, medetomidine, pentobarbital and avertin were tested in vitro on luciferase-expressing intact cells, and for non-volatile anesthetics on intact cells and cell lysates. In vivo, isoflurane was compared to unanesthetized animals and different anesthetics. Differences in maximal photon emission and time-to-peak photon emission were analyzed.

Results

All volatile anesthetics showed a clear inhibitory effect on the luciferase activity of 50% at physiological concentrations. Avertin had a stronger inhibitory effect of 80%. For ketamine and xylazine, increased photon emission was observed in intact cells, but this was not present in cell lysate assays, and was most likely due to cell toxicity and increased cell membrane permeability. In vivo, the highest signal intensities were measured in unanesthetized mice and pentobarbital anesthetized mice, followed by avertin. Isoflurane and ketamine/medetomidine anesthetized mice showed the lowest photon emission (40% of unanesthetized), with significantly longer time-to-peak than unanesthetized, pentobarbital or avertin-anesthetized mice. We conclude that, although strong inhibitory effects of anesthetics are present in vitro, their effect on in vivo BLI quantification is mainly due to their hemodynamic effects on mice and only to a lesser extent due to the direct inhibitory effect.

  More...

 

//-->