BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Immunology - Physiology - Respiratory Medicine

Assessment of Peripheral Airway Function following Chronic Allergen Challenge in a Sheep Model of Asthma
Published: Monday, December 12, 2011
Author: Joanne Van der Velden et al.

by Joanne Van der Velden, Donna Barker, Garry Barcham, Emmanuel Koumoundouros, Kenneth Snibson


There is increasing evidence that the small airways contribute significantly to the pathophysiology of asthma. However, due to the difficulty in accessing distal lung regions in clinical settings, functional changes in the peripheral airways are often overlooked in studies of asthmatic patients. The aim of the current study was to characterize progressive changes in small airway function in sheep repeatedly challenged with house dust mite (HDM) allergen.

Methodology/Principal Findings

Four spatially separate lung segments were utilized for HDM challenges. The right apical, right medial, right caudal and left caudal lung segments received 0, 8, 16 and 24 weekly challenges with HDM respectively. A wedged-bronchoscope technique was used to assess changes in peripheral resistance (Rp) at rest, and in response to specific and non-specific stimuli throughout the trial. Allergen induced inflammatory cell infiltration into bronchoalveolar lavage and increases in Rp in response to HDM and methacholine were localized to treated lung segments, with no changes observed in adjacent lung segments. The acute response to HDM was variable between sheep, and was significantly correlated to airway responsiveness to methacholine (rs?=?0.095, P<0.01). There was no correlation between resting Rp and the number of weeks of HDM exposure. Nor was there a correlation between the magnitude of early-phase airway response and the number of HDM-challenges.


Our findings indicate that airway responses to allergic and non-allergic stimuli are localized to specific treated areas of the lung. Furthermore, while there was a decline in peripheral airway function with HDM exposure, this decrease was not correlated with the length of allergen challenge.