BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Molecular Biology - Urology

Chemical Synthesis of Bacteriophage G4
Published: Wednesday, November 16, 2011
Author: Ruilin Yang et al.

by Ruilin Yang, Yonghua Han, Yiwang Ye, Yuchen Liu, Zhimao Jiang, Yaoting Gui, Zhiming Cai

Background

Due to recent leaps forward in DNA synthesis and sequencing technology, DNA manipulation has been extended to the level of whole-genome synthesis. Bacteriophages occupy a special niche in the micro-organic ecosystem and have potential as a tool for therapeutic agent. The purpose of this study was to carry out chemical synthesis of the bacteriophage G4 and the study of its infectivity.

Methodology/Principal Findings

Full-sized genomes of bacteriophage G4 molecules were completed from short overlapping synthetic oligonucleotides by direct assembly polymerase chain reaction and ligase chain reaction followed by fusion polymerase chain reaction with flanking primers. Three novel restriction endonuclease sites were introduced to distinguish the synthetic G4 from the wild type. G4 particles were recovered after electroporation into Escherichia coli and were efficient enough to infect another strain. The phage was validated by electron microscope. Specific polymerase chain reaction assay and restriction analyses of the plaques verified the accuracy of the chemical synthetic genomes.

Conclusions

Our results showed that the bacteriophage G4 obtained is synthetic rather than a wild type. Our study demonstrated that a phage can be synthesized and manipulated genetically according to the sequences, and can be efficient enough to infect the Escherichia coli, showing the potential use of synthetic biology in medical application.

  More...

 

//-->