BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Oncology - Radiology and Medical Imaging

An HR-MAS MR Metabolomics Study on Breast Tissues Obtained with Core Needle Biopsy
Published: Tuesday, October 18, 2011
Author: MuLan Li et al.

by MuLan Li, Yonghyun Song, Nariya Cho, Jung Min Chang, Hye Ryoung Koo, Ann Yi, Hyeonjin Kim, Sunghyouk Park, Woo Kyung Moon

Background

Much research has been devoted to the development of new breast cancer diagnostic measures, including those involving high-resolution magic angle spinning (HR-MAS) magnetic resonance (MR) spectroscopic techniques. Previous HR-MAS MR results have been obtained from post-surgery samples, which limits their direct clinical applicability.

Methodology/Principal Findings

In the present study, we performed HR-MAS MR spectroscopic studies on 31 breast tissue samples (13 cancer and 18 non-cancer) obtained by percutaneous core needle biopsy. We showed that cancer and non-cancer samples can be discriminated very well with Orthogonal Projections to Latent Structure-Discriminant Analysis (OPLS-DA) multivariate model on the MR spectra. A subsequent blind test showed 69% sensitivity and 94% specificity in the prediction of the cancer status. A spectral analysis showed that in cancer cells, taurine- and choline-containing compounds are elevated. Our approach, additionally, could predict the progesterone receptor statuses of the cancer patients.

Conclusions/Significance

HR-MAS MR metabolomics on intact breast tissues obtained by core needle biopsy may have a potential to be used as a complement to the current diagnostic and prognostic measures for breast cancers.

  More...

 

//-->