BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Mathematics - Oncology - Radiology and Medical Imaging

Assessing Antiangiogenic Therapy Response by DCE-MRI: Development of a Physiology Driven Multi-Compartment Model Using Population Pharmacometrics
Published: Tuesday, October 18, 2011
Author: Andreas Steingoetter et al.

by Andreas Steingoetter, Dieter Menne, Rickmer F. Braren

Dynamic contrast enhanced (DCE-) MRI is commonly applied for the monitoring of antiangiogenic therapy in oncology. Established pharmacokinetic (PK) analysis methods of DCE-MRI data do not sufficiently reflect the complex anatomical and physiological constituents of the analyzed tissue. Hence, accepted endpoints such as Ktrans reflect an unknown multitude of local and global physiological effects often rendering an understanding of specific local drug effects impossible. In this work a novel multi-compartment PK model is presented, which for the first time allows the separation of local and systemic physiological effects. DCE-MRI data sets from multiple, simultaneously acquired tissues, i.e. spinal muscle, liver and tumor tissue, of hepatocellular carcinoma (HCC) bearing rats were applied for model development. The full Markov chain Monte Carlo (MCMC) Bayesian analysis method was applied for model parameter estimation and model selection was based on histological and anatomical considerations and numerical criteria. A population PK model (MTL3 model) consisting of 3 measured and 6 latent (unobserved) compartments was selected based on Bayesian chain plots, conditional weighted residuals, objective function values, standard errors of model parameters and the deviance information criterion. Covariate model building, which was based on the histology of tumor tissue, demonstrated that the MTL3 model was able to identify and separate tumor specific, i.e. local, and systemic, i.e. global, effects in the DCE-MRI data. The findings confirm the feasibility to develop physiology driven multi-compartment PK models from DCE-MRI data. The presented MTL3 model allowed the separation of a local, tumor specific therapy effect and thus has the potential for identification and specification of effectors of vascular and tissue physiology in antiangiogenic therapy monitoring.