BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Critical Care and Emergency Medicine - Immunology - Respiratory Medicine

The Receptor for Urokinase Regulates TLR2 Mediated Inflammatory Responses in Neutrophils
Published: Wednesday, October 05, 2011
Author: Gang Liu et al.

by Gang Liu, Yanping Yang, Shanzhong Yang, Sami Banerjee, Andressa De Freitas, Arnaud Friggeri, Kasey I. Davis, Edward Abraham

The urokinase-type plasminogen activator receptor (uPAR), a glycosylphosphatidylinositol (GPI) anchored membrane protein, regulates urokinase (uPA) protease activity, chemotaxis, cell-cell interactions, and phagocytosis of apoptotic cells. uPAR expression is increased in cytokine or bacteria activated cell populations, including macrophages and monocytes. However, it is unclear if uPAR has direct involvement in the response of inflammatory cells, such as neutrophils and macrophages, to Toll like receptor (TLR) stimulation. In this study, we found that uPAR is required for optimal neutrophil activation after TLR2, but not TLR4 stimulation. We found that the expression of TNF-a and IL-6 induced by TLR2 engagement in uPAR-/- neutrophils was less than that in uPAR+/+ (WT) neutrophils. Pretreatment of neutrophils with PI-PLC, which cleaves GPI moieties, significantly decreased TLR2 induced expression of TNF-a in WT neutrophils, but demonstrated only marginal effects on TNF-a expression in PAM treated uPAR-/- neutrophils. I?B-a degradation and NF-?B activation were not different in uPAR-/- or WT neutrophils after TLR2 stimulation. However, uPAR is required for optimal p38 MAPK activation after TLR2 engagement. Consistent with the in vitro findings that uPAR modulates TLR2 engagement induced neutrophil activation, we found that pulmonary and systemic inflammation induced by TLR2, but not TLR4 stimulation is reduced in uPAR-/- mice compared to WT counterparts. Therefore, our data suggest that neutrophil associated uPAR could be a potential target for treating acute inflammation, sepsis, and organ injury related to severe bacterial and other microbial infections in which TLR2 engagement plays a major role.