BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Radiology and Medical Imaging

Different Capacity of Monocyte Subsets to Phagocytose Iron-Oxide Nanoparticles
Published: Monday, October 03, 2011
Author: Marcus Settles et al.

by Marcus Settles, Martin Etzrodt, Katja Kosanke, Matthias Schiemann, Alexander Zimmermann, Reinhard Meier, Rickmer Braren, Armin Huber, Ernst J. Rummeny, Ralph Weissleder, Filip K. Swirski, Moritz Wildgruber

Objective

To explore the capacity of human CD14+CD16++ and CD14++CD16- monocytes to phagocyte iron-oxide nanoparticles in vitro.

Methods

Human monocytes were labeled with four different magnetic nanoparticle preparations (Ferumoxides, SHU 555C, CLIO-680, MION-48) exhibiting distinct properties and cellular uptake was quantitatively assessed by flow cytometry, fluorescence microscopy, atomic absorption spectrometry and Magnetic Resonance Imaging (MRI). Additionally we determined whether cellular uptake of the nanoparticles resulted in phenotypic changes of cell surface markers.

Results

Cellular uptake differed between the four nanoparticle preparations. However for each nanoparticle tested, CD14++CD16- monocytes displayed a significantly higher uptake compared to CD14+CD16++ monocytes, this resulted in significantly lower T1 and T2 relaxation times of these cells. The uptake of iron-oxide nanoparticles further resulted in a remarkable shift of expression of cell surface proteins indicating that the labeling procedure affects the phenotype of CD14+CD16++ and CD14++CD16- monocytes differently.

Conclusion

Human monocyte subsets internalize different magnetic nanoparticle preparations differently, resulting in variable loading capacities, imaging phenotypes and likely biological properties.

  More...