BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Computer Science

Functional Analysis beyond Enrichment: Non-Redundant Reciprocal Linkage of Genes and Biological Terms
Published: Friday, September 16, 2011
Author: Celia Fontanillo et al.

by Celia Fontanillo, Ruben Nogales-Cadenas, Alberto Pascual-Montano, Javier De Las Rivas

Functional analysis of large sets of genes and proteins is becoming more and more necessary with the increase of experimental biomolecular data at omic-scale. Enrichment analysis is by far the most popular available methodology to derive functional implications of sets of cooperating genes. The problem with these techniques relies in the redundancy of resulting information, that in most cases generate lots of trivial results with high risk to mask the reality of key biological events. We present and describe a computational method, called GeneTerm Linker, that filters and links enriched output data identifying sets of associated genes and terms, producing metagroups of coherent biological significance. The method uses fuzzy reciprocal linkage between genes and terms to unravel their functional convergence and associations. The algorithm is tested with a small set of well known interacting proteins from yeast and with a large collection of reference sets from three heterogeneous resources: multiprotein complexes (CORUM), cellular pathways (SGD) and human diseases (OMIM). Statistical Precision, Recall and balanced F-score are calculated showing robust results, even when different levels of random noise are included in the test sets. Although we could not find an equivalent method, we present a comparative analysis with a widely used method that combines enrichment and functional annotation clustering. A web application to use the method here proposed is provided at http://gtlinker.cnb.csic.es.
  More...