BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Hematology - Immunology - Infectious Diseases - Microbiology

Candida albicans Induces Selective Development of Macrophages and Monocyte Derived Dendritic Cells by a TLR2 Dependent Signalling
Published: Thursday, September 15, 2011
Author: Alberto Yáñez et al.

by Alberto Yáñez, Javier Megías, José-Enrique O'Connor, Daniel Gozalbo, M. Luisa Gil

As TLRs are expressed by haematopoietic stem and progenitor cells (HSPCs), these receptors may play a role in haematopoiesis in response to pathogens during infection. We have previously demonstrated that in in vitro defined conditions inactivated yeasts and hyphae of Candida albicans induce HSPCs proliferation and differentiation towards the myeloid lineage by a TLR2/MyD88 dependent pathway. In this work, we showed that C. albicans invasive infection with a low virulence strain results in a rapid expansion of HSPCs (identified as LKS cells: Lin- c-Kit+ Sca-1+ IL-7Ra-), that reach the maximum at day 3 post-infection. This in vivo expansion of LKS cells in TLR2-/- mice was delayed until day 7 post- infection. Candidiasis was, as expected, accompanied by an increase in granulopoiesis and decreased lymphopoiesis in the bone marrow. These changes were more pronounced in TLR2-/- mice correlating with their higher fungal burden. Accordingly, emigration of Ly6Chigh monocytes and neutrophils to spleen was increased in TLR2-/- mice, although the increase in macrophages and inflammatory macrophages was completely dependent on TLR2. Similarly, we detected for the first time, in the spleen of C. albicans infected control mice, a newly generated population of dendritic cells that have the phenotype of monocyte derived dendritic cells (moDCs) that were not generated in TLR2-/- infected mice. In addition, C. albicans signalling through TLR2/MyD88 and Dectin-1 promotes in vitro the differentiation of Lin- cells towards moDCs that secrete TNF-a and are able to kill the microorganism. Therefore, our results indicate that during infection C. albicans can directly stimulate progenitor cells through TLR2 and Dectin-1 to generate newly formed inflammatory macrophages and moDCs that may fulfill an essential role in defense mechanisms against the pathogen.