BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Mental Health - Neurological Disorders - Neuroscience - Pediatrics and Child Health

Preschoolers' Precision of the Approximate Number System Predicts Later School Mathematics Performance
Published: Wednesday, September 14, 2011
Author: Michèle M. M. Mazzocco et al.

by Michèle M. M. Mazzocco, Lisa Feigenson, Justin Halberda

The Approximate Number System (ANS) is a primitive mental system of nonverbal representations that supports an intuitive sense of number in human adults, children, infants, and other animal species. The numerical approximations produced by the ANS are characteristically imprecise and, in humans, this precision gradually improves from infancy to adulthood. Throughout development, wide ranging individual differences in ANS precision are evident within age groups. These individual differences have been linked to formal mathematics outcomes, based on concurrent, retrospective, or short-term longitudinal correlations observed during the school age years. However, it remains unknown whether this approximate number sense actually serves as a foundation for these school mathematics abilities. Here we show that ANS precision measured at preschool, prior to formal instruction in mathematics, selectively predicts performance on school mathematics at 6 years of age. In contrast, ANS precision does not predict non-numerical cognitive abilities. To our knowledge, these results provide the first evidence for early ANS precision, measured before the onset of formal education, predicting later mathematical abilities.
  More...