BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Respiratory Medicine - Immunology - Physiology

Lipopolysaccharide-Induced Expression of Microsomal Prostaglandin E Synthase-1 Mediates Late-Phase PGE2 Production in Bone Marrow Derived Macrophages
Published: Friday, November 30, 2012
Author: Lei Xiao et al.

by Lei Xiao, Magdalena Ornatowska, Guiqing Zhao, Hongmei Cao, Rui Yu, Jing Deng, Yongchao Li, Qiong Zhao, Ruxana T. Sadikot, John W. Christman

Cyclooxygenase (COX)-2 expression and release of prostaglandins (PGs) by macrophages are consistent features of lipopolysaccharide (LPS)-induced macrophage inflammation. The two major PGs, PGE2 and PGD2, are synthesized by the prostanoid isomerases, PGE synthases (PGES) and PGD synthases (PGDS), respectively. Since the expression profile and the individual role of these prostanoid isomerases-mediated inflammation in macrophages has not been defined, we examined the LPS-stimulated PGs production pattern and the expression profile of their synthases in the primary cultured mouse bone marrow derived macrophages (BMDM). Our data show that LPS induced both PGE2 and PGD2 production, which was evident by ~8 hrs and remained at a similar ratio (~1:1) in the early phase (=12 hrs) of LPS treatment. However, PGE2 production continued increase further in the late phase (16–24 hrs); whereas the production of PGD2 remained at a stable level from 12 to 24 hrs post-treatment. In response to LPS-treatment, the expression of both COX-2 and inducible nitric oxide synthase (iNOS) was detected within 2 to 4 hrs; whereas the increased expression of microsomal PGES (mPGES)-1 and a myeloid cell transcription factor PU.1 did not appear until later phase (=12 hrs). In contrast, the expression of COX-1, hematopoietic-PGDS (H-PGDS), cytosolic-PGES (c-PGES), or mPGES-2 in BMDM was not affected by LPS treatment. Selective inhibition of mPGES-1 with either siRNA or isoform-selective inhibitor CAY10526, but not mPGES-2, c-PGES or PU.1, attenuated LPS-induced burst of PGE2 production indicating that mPGES-1 mediates LPS-induced PGE2 production in BMDM. Interestingly, selective inhibition of mPGES-1 was also associated with a decrease in LPS-induced iNOS expression. In summary, our data show that mPGES-1, but not mPGES-2 or c-PGES isomerase, mediates LPS-induced late-phase burst of PGE2 generation, and regulates LPS-induced iNOS expression in BMDM.
  More...