BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Radiology and Medical Imaging

18F-FDG PET Imaging of Murine Atherosclerosis: Association with Gene Expression of Key Molecular Markers
Published: Friday, November 30, 2012
Author: Anne Mette Fisker Hag et al.

by Anne Mette Fisker Hag, Sune Folke Pedersen, Christina Christoffersen, Tina Binderup, Mette Munk Jensen, Jesper Tranekjær Jørgensen, Dorthe Skovgaard, Rasmus Sejersten Ripa, Andreas Kjaer

Aim

To study whether 18F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between 18F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE-/- mice.

Methods

Nine groups of apoE-/- mice were given normal chow or high-fat diet. At different time-points, 18F-FDG PET/contrast-enhanced CT scans were performed on dedicated animal scanners. After scans, animals were euthanized, aortas removed, gamma counted, RNA extracted from the tissue, and gene expression of chemo (C-X-C motif) ligand 1 (CXCL-1), monocyte chemoattractant protein (MCP)-1, vascular cell adhesion molecule (VCAM)-1, cluster of differentiation molecule (CD)-68, osteopontin (OPN), lectin-like oxidized LDL-receptor (LOX)-1, hypoxia-inducible factor (HIF)-1a, HIF-2a, vascular endothelial growth factor A (VEGF), and tissue factor (TF) was measured by means of qPCR.

Results

The uptake of 18F-FDG increased over time in the groups of mice receiving high-fat diet measured by PET and ex vivo gamma counting. The gene expression of all examined markers of atherosclerosis correlated significantly with 18F-FDG uptake. The strongest correlation was seen with TF and CD68 (p<0.001). A multivariate analysis showed CD68, OPN, TF, and VCAM-1 to be the most important contributors to the uptake of 18F-FDG. Together they could explain 60% of the 18F-FDG uptake.

Conclusion

We have demonstrated that 18F-FDG can be used to follow the progression of atherosclerosis in apoE-/- mice. The gene expression of ten molecular markers representing different molecular processes important for atherosclerosis was shown to correlate with the uptake of 18F-FDG. Especially, the gene expressions of CD68, OPN, TF, and VCAM-1 were strong predictors for the uptake.

  More...