BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Physics - Physiology - Radiology and Medical Imaging

Predicting Cortical Bone Strength from DXA and Dental Cone-Beam CT
Published: Friday, November 30, 2012
Author: Jui-Ting Hsu et al.

by Jui-Ting Hsu, Ying-Ju Chen, Ming-Tzu Tsai, Howard Haw-Chang Lan, Fu-Chou Cheng, Michael Y. C. Chen, Shun-Ping Wang

Objective

This study compared the capabilities of dual-energy X-ray absorptiometry (DXA) and dental cone-beam computed tomography (CBCT) for predicting the cortical bone strength of rat femurs and tibias.

Materials and Methods

Specimens of femurs and tibias obtained from 14 rats were first scanned with DXA to obtain the areal bone mineral density (BMD) of the midshaft cortical portion of the bones. The bones were then scanned using dental CBCT to measure the volumetric cortical bone mineral density (vCtBMD) and the cross-sectional moment of inertia (CSMI) for calculating the bone strength index (BSI). A three-point bending test was conducted to measure the fracture load of each femur and tibia. Bivariate linear Pearson analysis was used to calculate the correlation coefficients (r values) among the CBCT measurements, DXA measurements, and three-point bending parameters.

Results

The correlation coefficients for the associations of the fracture load with areal BMD (measured using DXA), vCtBMD (measured using CBCT), CSMI (measured using CBCT), and BSI were 0.585 (p?=?0.028) and 0.532 (p?=?0.050) (for the femur and tibia, respectively), 0.638 (p?=?0.014) and 0.762 (p?=?0.002), 0.778 (p?=?0.001) and 0.792 (p<0.001), and 0.822 (p<0.001) and 0.842 (p<0.001), respectively.

Conclusions

CBCT was found to be superior to DXA for predicting cortical bone fracture loads in rat femurs and tibias. The BSI, which is a combined index of densitometric and geometric parameters, was especially useful. Further clinical studies are needed to validate the predictive value of BSI obtained from CBCT and should include testing on human cadaver specimens.

  More...