BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Biophysics - Chemistry - Non-Clinical Medicine - Respiratory Medicine

A Rapid Screening Assay to Search for Phosphorylated Proteins in Tissue Extracts
Published: Thursday, November 15, 2012
Author: Ignazio Garaguso et al.

by Ignazio Garaguso, Juergen Borlak

Reversible protein phosphorylation is an essential mechanism in the regulation of diverse biological processes, nonetheless is frequently altered in disease. As most phosphoproteome studies are based on optimized in-vitro cell culture studies new methods are in need to improve de novo identification and characterization of phosphoproteins in extracts from tissues. Here, we describe a rapid and reliable method for the detection of phosphoproteins in tissue extract based on an experimental strategy that employs 1D and 2D SDS PAGE, Western immunoblotting of phosphoproteins, in-gel protease digestion and enrichment of phosphorpeptides using metal oxide affinity chromatography (MOAC). Subsequently, phosphoproteins are identified by MALDI-TOF-MS/MS with the CHCA-TL or DHB ML sample matrix preparation method and further characterized by various bioinformatic software tools to search for candidate kinases and phosphorylation-dependent binding motifs. The method was applied to mouse lung tissue extracts and resulted in an identification of 160 unique phosphoproteins. Notably, TiO2 enrichment of pulmonary protein extracts resulted in an identification of additional 17 phosphoproteins and 20 phosphorylation sites. By use of MOAC, new phosphorylation sites were identified as evidenced for the advanced glycosylation end product-specific receptor. So far this protein was unknown to be phosphorylated in lung tissue of mice. Overall the developed methodology allowed efficient and rapid screening of phosphorylated proteins and can be employed as a general experimental strategy for an identification of phosphoproteins in tissue extracts.
  More...