BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Dermatology - Hematology - Physiology - Surgery

The Mobilization and Recruitment of C-Kit+ Cells Contribute to Wound Healing after Surgery
Published: Wednesday, November 14, 2012
Author: Yoshihiro Takemoto et al.

by Yoshihiro Takemoto, Tao-Sheng Li, Masayuki Kubo, Mako Ohshima, Hiroshi Kurazumi, Kazuhiro Ueda, Tadahiko Enoki, Tomoaki Murata, Kimikazu Hamano

Delayed wound healing is a serious clinical problem in patients after surgery. A recent study has demonstrated that bone marrow-derived c-kit-positive (c-kit+) cells play important roles in repairing and regenerating various tissues and organs. To examine the hypothesis that surgical injury induces the mobilization and recruitment of c-kit+ cells to accelerate wound healing. Mice were subjected to a left pneumonectomy. The mobilization of c-kit+ cells was monitored after surgery. Using green fluorescent protein (GFP+) bone marrow-transplanted chimera mice, we investigated further whether the mobilized c-kit+ cells were recruited to effect wound healing in a skin puncture model. The group with left pneumonectomies increased the c-kit+ and CD34+ stem cells in peripheral blood 24 h after surgery. At 3 days after surgery, the skin wound size was observed to be significantly smaller, and the number of bone marrow-derived GFP+ cells and GFP+/c-kit+ cells in the wound tissue was significantly greater in mice that had received pneumonectomies, as compared with those that had received a sham operation. Furthermore, some of these GFP+ cells were positively expressed specific markers of macrophages (F4/80), endothelial cells (CD31), and myofibroblasts (aSMA). The administration of AMD3100, an antagonist of a stromal-cell derived factor (SDF)-1/CXCR4 signaling pathway, reduced the number of GFP+ cells in wound tissue and completely negated the accelerated wound healing. Surgical injury induces the mobilization and recruitment of c-kit+ cells to contribute to wound healing. Regulating c-kit+ cells may provide a new approach that accelerates wound healing after surgery.