BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Oncology - Physiology - Radiology and Medical Imaging

Virtual Touch Tissue Quantification of Acoustic Radiation Force Impulse: A New Ultrasound Elastic Imaging in the Diagnosis of Thyroid Nodules
Published: Tuesday, November 13, 2012
Author: Yi-Feng Zhang et al.

by Yi-Feng Zhang, Hui-Xiong Xu, Yong He, Chang Liu, Le-Hang Guo, Lin-Na Liu, Jun-Mei Xu


Virtual touch tissue quantification (VTQ) of acoustic radiation force impulse (ARFI) is a new quantitative technique to measure tissue stiffness. The study was aimed to assess the usefulness of VTQ in the diagnosis of thyroid nodules.


173 pathologically proven thyroid nodules in 142 patients were included and all were examined by conventional ultrasound (US), conventional elasticity imaging (EI) and VTQ of ARFI. The tissue stiffness for VTQ was expressed as shear wave velocity (SWV) (m/s). Receiver-operating characteristic curve (ROC) analyses were performed to assess the diagnostic performance. Intra- and inter-observer reproducibility of VTQ measurement was assessed.


The SWVs of benign and malignant thyroid nodules were 2.34±1.17 m/s (range: 0.61–9.00 m/s) and 4.82±2.53 m/s (range: 2.32–9.00 m/s) respectively (P<0.001). The mean SWV ratios between each nodule and the adjacent thyroid tissue were 1.19±0.67 (range: 0.31–6.87) for benign and 2.50±1.54 (range: 0.85–6.69) for malignant nodules (P<0.001). ROC analyses indicated that the area under the curve was 0.861 (95% CI : 0.804, 0.918) (P<0.001) for SWV and 0.831(95% CI : 0.761, 0.900)(P<0.001) for the SWV ratio. The cutoff points for the differential diagnosis were 2.87 m/s for SWV and 1.59 for SWV ratio. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for EI were 65.9%, 66.7%, 66.5%, 40.3%, and 85.1%, respectively, and were 63.6%–75%, 82.2%–88.4%, 80.3%–82.1%, 58.9%–65.1%, and 87.7%–90.5%, respectively, for VTQ. The diagnostic value of VTQ is the highest for nodules >20 mm and lowest for those =10 mm. The correlation coefficients were 0.904 for intraobserver measurement and 0.864 for interobserver measurement.


VTQ of ARFI provides quantitative and reproducible information about the tissue stiffness, which is useful for the differentiation between benign and malignant thyroid nodules. The diagnostic performance of VTQ is higher than that of conventional EI.