BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biotechnology - Geriatrics - Neuroscience - Non-Clinical Medicine - Physics - Public Health and Epidemiology

Extreme Levels of Noise Constitute a Key Neuromuscular Deficit in the Elderly
Published: Tuesday, November 06, 2012
Author: Navrag B. Singh et al.

by Navrag B. Singh, Niklas König, Adamantios Arampatzis, Markus O. Heller, William R. Taylor

Fluctuations during isometric force production tasks occur due to the inability of musculature to generate purely constant submaximal forces and are considered to be an estimation of neuromuscular noise. The human sensori-motor system regulates complex interactions between multiple afferent and efferent systems, which results in variability during functional task performance. Since muscles are the only active component of the motor system, it therefore seems reasonable that neuromuscular noise plays a key role in governing variability during both standing and walking. Seventy elderly women (including 34 fallers) performed multiple repetitions of isometric force production, quiet standing and walking tasks. No relationship between neuromuscular noise and functional task performance was observed in either the faller or the non-faller cohorts. When classified into groups with either nominal (group NOM, 25th –75th percentile) or extreme (either too high or too low, group EXT) levels of neuromuscular noise, group NOM demonstrated a clear association (r2>0.23, p<0.05) between neuromuscular noise and variability during task performance. On the other hand, group EXT demonstrated no such relationship, but also tended to walk slower, and had lower stride lengths, as well as lower isometric strength. These results suggest that neuromuscular noise is related to the quality of both static and dynamic functional task performance, but also that extreme levels of neuromuscular noise constitute a key neuromuscular deficit in the elderly.