BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Non-Clinical Medicine - Respiratory Medicine - Public Health and Epidemiology

Humans as Animal Sentinels for Forecasting Asthma Events: Helping Health Services Become More Responsive
Published: Wednesday, October 31, 2012
Author: Ireneous N. Soyiri et al.

by Ireneous N. Soyiri, Daniel D. Reidpath

The concept of forecasting asthma using humans as animal sentinels is uncommon. This study explores the plausibility of predicting future asthma daily admissions using retrospective data in London (2005–2006). Negative binomial regressions were used in modeling; allowing the non-contiguous autoregressive components. Selected lags were based on partial autocorrelation function (PACF) plot with a maximum lag of 7 days. The model was contrasted with naïve historical and seasonal models. All models were cross validated. Mean daily asthma admission in 2005 was 27.9 and in 2006 it was 28.9. The lags 1, 2, 3, 6 and 7 were independently associated with daily asthma admissions based on their PACF plots. The lag model prediction of peak admissions were often slightly out of synchronization with the actual data, but the days of greater admissions were better matched than the days of lower admissions. A further investigation across various populations is necessary.
  More...

 

//-->