BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biotechnology - Critical Care and Emergency Medicine - Immunology - Pharmacology - Radiology and Medical Imaging

Modeling 18F-FDG Kinetics during Acute Lung Injury: Experimental Data and Estimation Errors
Published: Wednesday, October 31, 2012
Author: A. Susanne Dittrich et al.

by A. Susanne Dittrich, Tilo Winkler, Tyler Wellman, Nicolas de Prost, Guido Musch, R. Scott Harris, Marcos F. Vidal Melo

Background

There is increasing interest in Positron Emission Tomography (PET) of 2-deoxy-2-[18F]flouro-D-glucose (18F-FDG) to evaluate pulmonary inflammation during acute lung injury (ALI). We assessed the effect of extra-vascular lung water on estimates of 18F-FDG-kinetics parameters in experimental and simulated data using the Patlak and Sokoloff methods, and our recently proposed four-compartment model.

Methodology/Principal Findings

Eleven sheep underwent unilateral lung lavage and 4 h mechanical ventilation. Five sheep received intravenous endotoxin (10 ng/kg/min). Dynamic 18F-FDG PET was performed at the end of the 4 h period. 18F-FDG net uptake rate (Ki), phosphorylation rate (k3), and volume of distribution (Fe) were estimated in three isogravitational regions for each method. Simulations of normal and ALI 18F-FDG-kinetics were conducted to study the dependence of estimated parameters on the transport rate constants to (k5) and from (k6) the extra-vascular extra-cellular compartment. The four-compartment model described 85.7% of the studied 18F-FDG-kinetics better than the Sokoloff model. Relative to the four-compartment model the Sokoloff model exhibited a consistent positive bias in Ki (3.32 [1.30–5.65] 10-4/min, p<0.001) and showed inaccurate estimates of the parameters composing Ki (k3 and Fe), even when Ki was similar for those methods. In simulations, errors in estimates of Ki due to the extra-vascular extra-cellular compartment depended on both k5 and k5/k6, with errors for the Patlak and Sokoloff methods of 0.02 [-0.01–0.18] and 0.40 [0.18–0.60] 10-3/min for normal lungs and of -0.47 [-0.89–0.72] and 2.35 [0.85–3.68] 10-3/min in ALI.

Conclusions/Significance

18F-FDG accumulation in lung extra-vascular fluid, which is commonly increased during lung injury, can result in substantial estimation errors using the traditional Patlak and Sokoloff methods. These errors depend on the extra-vascular extra-cellular compartment volume and its transport rates with other compartments. The four-compartment model provides more accurate quantification of 18F-FDG-kinetics than those methods in the presence of increased extra-vascular fluid.

  More...