BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Hematology - Immunology - Physiology

Age-Dependent Changes in the Sphingolipid Composition of Mouse CD4+ T Cell Membranes and Immune Synapses Implicate Glucosylceramides in Age-Related T Cell Dysfunction
Published: Friday, October 26, 2012
Author: Alberto Molano et al.

by Alberto Molano, Zhaofeng Huang, Melissa G. Marko, Angelo Azzi, Dayong Wu, Elaine Wang, Samuel L. Kelly, Alfred H. Merrill, Stephen C. Bunnell, Simin Nikbin Meydani

To determine whether changes in sphingolipid composition are associated with age-related immune dysfunction, we analyzed the core sphingolipidome (i.e., all of the metabolites through the first headgroup additions) of young and aged CD4+ T cells. Since sphingolipids influence the biophysical properties of membranes, we evaluated the compositions of immune synapse (IS) and non-IS fractions prepared by magnetic immuno-isolation. Broadly, increased amounts of sphingomyelins, dihydrosphingomyelins and ceramides were found in aged CD4+ T cells. After normalizing for total sphingolipid content, a statistically significant decrease in the molar fraction of glucosylceramides was evident in both the non-IS and IS fractions of aged T cells. This change was balanced by less dramatic increases in the molar fractions of sphingomyelins and dihydrosphingomyelins in aged CD4+ T cells. In vitro, the direct or enzymatic enhancement of ceramide levels decreased CD4+ T cell proliferation without regard for the age of the responding T cells. In contrast, the in vitro inhibition of glucosylceramidase preferentially increased the proliferation of aged CD4+ T cells. These results suggest that reductions in glucosylceramide abundance contribute to age-related impairments in CD4+ T cell function.
  More...

 

//-->