BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Diabetes and Endocrinology - Public Health and Epidemiology - Rheumatology

Polymorphisms in the Inflammatory Genes CIITA, CLEC16A and IFNG Influence BMD, Bone Loss and Fracture in Elderly Women
Published: Thursday, October 25, 2012
Author: Maria Swanberg et al.

by Maria Swanberg, Fiona E. McGuigan, Kaisa K. Ivaska, Paul Gerdhem, Kristina Åkesson

Osteoclast activity and the fine balance between bone formation and resorption is affected by inflammatory factors such as cytokines and T lymphocyte activity, mediated by major histocompatibility complex (MHC) molecules, in turn regulated by the MHC class II transactivator (MHC2TA). We investigated the effect of functional polymorphisms in the MHC2TA gene (CIITA), and two additional genes; C-type lectin domain 16A (CLEC16A), in linkage disequilibrium with CIITA and Interferon-? (IFNG), an inducer of CIITA; on bone density, bone resorption markers, bone loss and fracture risk in 75 year-old women followed for up to 10 years (OPRA n?=?1003) and in young adult women (PEAK-25 n?=?999). CIITA was associated with BMD at age 75 (lumbar spine p?=?0.011; femoral neck (FN) p?=?0.049) and age 80 (total body p?=?0.015; total hip p?=?0.042; FN p?=?0.028). Carriers of the CIITA rs3087456(G) allele had 1.8–3.4% higher BMD and displayed increased rate of bone loss between age 75 and 80 (FN p?=?0.013; total hip p?=?0.030; total body p?=?3.8E-5). Despite increasing bone loss, the rs3087456(G) allele was protective against incident fracture overall (p?=?0.002), osteoporotic fracture and hip fracture. Carriers of CLEC16A and IFNG variant alleles had lower BMD (p<0.05) and ultrasound parameters and a lower risk of incident fracture (CLEC16A, p?=?0.011). In 25-year old women, none of the genes were associated with BMD. In conclusion, variation in inflammatory genes CIITA, CLEC-16A and INFG appear to contribute to bone phenotypes in elderly women and suggest a role for low-grade inflammation and MHC class II expression for osteoporosis pathogenesis.
  More...