BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Gastroenterology and Hepatology - Pediatrics and Child Health

Carnitine Deficiency in OCTN2-/- Newborn Mice Leads to a Severe Gut and Immune Phenotype with Widespread Atrophy, Apoptosis and a Pro-Inflammatory Response
Published: Wednesday, October 24, 2012
Author: Srinivas Sonne et al.

by Srinivas Sonne, Prem S. Shekhawat, Dietrich Matern, Vadivel Ganapathy, Leszek Ignatowicz

We have investigated the gross, microscopic and molecular effects of carnitine deficiency in the neonatal gut using a mouse model with a loss-of-function mutation in the OCTN2 (SLC22A5) carnitine transporter. The tissue carnitine content of neonatal homozygous (OCTN2-/-) mouse small intestine was markedly reduced; the intestine displayed signs of stunted villous growth, early signs of inflammation, lymphocytic and macrophage infiltration and villous structure breakdown. Mitochondrial ß-oxidation was active throughout the GI tract in wild type newborn mice as seen by expression of 6 key enzymes involved in ß-oxidation of fatty acids and genes for these 6 enzymes were up-regulated in OCTN2-/- mice. There was increased apoptosis in gut samples from OCTN2-/- mice. OCTN2-/- mice developed a severe immune phenotype, where the thymus, spleen and lymph nodes became atrophied secondary to increased apoptosis. Carnitine deficiency led to increased expression of CD45-B220+ lymphocytes with increased production of basal and anti-CD3-stimulated pro-inflammatory cytokines in immune cells. Real-time PCR array analysis in OCTN2-/- mouse gut epithelium demonstrated down-regulation of TGF-ß/BMP pathway genes. We conclude that carnitine plays a major role in neonatal OCTN2-/- mouse gut development and differentiation, and that severe carnitine deficiency leads to increased apoptosis of enterocytes, villous atrophy, inflammation and gut injury.
  More...