BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Mathematics - Non-Clinical Medicine - Public Health and Epidemiology - Science Policy

A Flexible Alternative to the Cox Proportional Hazards Model for Assessing the Prognostic Accuracy of Hospice Patient Survival
Published: Wednesday, October 17, 2012
Author: Branko Miladinovic et al.

by Branko Miladinovic, Ambuj Kumar, Rahul Mhaskar, Sehwan Kim, Ronald Schonwetter, Benjamin Djulbegovic

Prognostic models are often used to estimate the length of patient survival. The Cox proportional hazards model has traditionally been applied to assess the accuracy of prognostic models. However, it may be suboptimal due to the inflexibility to model the baseline survival function and when the proportional hazards assumption is violated. The aim of this study was to use internal validation to compare the predictive power of a flexible Royston-Parmar family of survival functions with the Cox proportional hazards model. We applied the Palliative Performance Scale on a dataset of 590 hospice patients at the time of hospice admission. The retrospective data were obtained from the Lifepath Hospice and Palliative Care center in Hillsborough County, Florida, USA. The criteria used to evaluate and compare the models' predictive performance were the explained variation statistic R2, scaled Brier score, and the discrimination slope. The explained variation statistic demonstrated that overall the Royston-Parmar family of survival functions provided a better fit (R2?=?0.298; 95% CI: 0.236–0.358) than the Cox model (R2?=?0.156; 95% CI: 0.111–0.203). The scaled Brier scores and discrimination slopes were consistently higher under the Royston-Parmar model. Researchers involved in prognosticating patient survival are encouraged to consider the Royston-Parmar model as an alternative to Cox.
  More...