BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Nephrology - Urology

Apocynin-Treatment Reverses Hyperoxaluria Induced Changes in NADPH Oxidase System Expression in Rat Kidneys: A Transcriptional Study
Published: Tuesday, October 16, 2012
Author: Sunil Joshi et al.

by Sunil Joshi, Benjamin T. Saylor, Wei Wang, Ammon B. Peck, Saeed R. Khan


We have previously shown that production of reactive oxygen species (ROS) is an important contributor to renal injury and inflammation following exposure to oxalate (Ox) or calcium-oxalate (CaOx) crystals. The present study was conducted, utilizing global transcriptome analyses, to determine the effect of Apocynin on changes in the NADPH oxidase system activated in kidneys of rats fed a diet leading to hyperoxaluria and CaOx crystal deposition.


Age-, sex- and weight-matched rats were either fed regular rat chow or regular rat chow supplemented with 5% w/w hydroxy-L-proline (HLP). Half of the rats on the HLP diet were also placed on Apocynin-supplemented H2O. After 28 days, each rat was euthanized, their kidneys freshly explanted and dissected to obtain both cortex and medulla tissues. Total RNA was extracted from each tissue and subjected to genomic microarrays to obtain global transcriptome data. KEGG was used to identify gene clusters with differentially expressed genes. Immunohistochemistry was used to confirm protein expressions of selected genes.


Genes encoding both membrane- and cytosolic-NADPH oxidase complex-associated proteins, together with p21rac and Rap1a, were coordinately up-regulated significantly in both renal medulla and cortex tissues in the HLP-fed rats compared to normal healthy untreated controls. Activation of NADPH oxidase appears to occur via the angiotensin-II/angiotensin-II receptor-2 pathway, although the DAG-PKC pathway of neutrophils may also contribute. Immuno histochemical staining confirmed up-regulated gene expressions. Simultaneously, genes encoding ROS scavenger proteins were down-regulated. HLP-fed rats receiving Apocynin had a complete reversal in the differential-expression of the NADPH oxidase system genes, despite showing similar levels of hyperoxaluria.


A strong up-regulation of an oxidative/respiratory burst involving the NADPH oxidase system, activated via the angiotensin-II and most likely the DAG-PKC pathways, occurs in kidneys of hyperoxaluric rats. Apocynin treatment reversed this activation without affecting the levels of hyperoxaluria.