BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Computer Science - Oncology - Radiology and Medical Imaging

Facilitating Tumor Functional Assessment by Spatially Relating 3D Tumor Histology and In Vivo MRI: Image Registration Approach
Published: Monday, August 29, 2011
Author: Lejla Alic et al.

by Lejla Alic, Joost C. Haeck, Karin Bol, Stefan Klein, Sandra T. van Tiel, Piotr A. Wielepolski, Marion de Jong, Wiro J. Niessen, Monique Bernsen, Jifke F. Veenland

Background

Magnetic resonance imaging (MRI), together with histology, is widely used to diagnose and to monitor treatment in oncology. Spatial correspondence between these modalities provides information about the ability of MRI to characterize cancerous tissue. However, registration is complicated by deformations during pathological processing, and differences in scale and information content.

Methodology/Principal Findings

This study proposes a methodology for establishing an accurate 3D relation between histological sections and high resolution in vivo MRI tumor data. The key features of the methodology are: 1) standardized acquisition and processing, 2) use of an intermediate ex vivo MRI, 3) use of a reference cutting plane, 4) dense histological sampling, 5) elastic registration, and 6) use of complete 3D data sets. Five rat pancreatic tumors imaged by T2*-w MRI were used to evaluate the proposed methodology. The registration accuracy was assessed by root mean squared (RMS) distances between manually annotated landmark points in both modalities. After elastic registration the average RMS distance decreased from 1.4 to 0.7 mm. The intermediate ex vivo MRI and the reference cutting plane shared by all three 3D images (in vivo MRI, ex vivo MRI, and 3D histology data) were found to be crucial for the accurate co-registration between the 3D histological data set and in vivo MRI. The MR intensity in necrotic regions, as manually annotated in 3D histology, was significantly different from other histologically confirmed regions (i.e., viable and hemorrhagic). However, the viable and the hemorrhagic regions showed a large overlap in T2*-w MRI signal intensity.

Conclusions

The established 3D correspondence between tumor histology and in vivo MRI enables extraction of MRI characteristics for histologically confirmed regions. The proposed methodology allows the creation of a tumor database of spatially registered multi-spectral MR images and multi-stained 3D histology.

  More...