BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Geriatrics - Mental Health - Neuroscience - Physiology

Reaching a Better Understanding of the Control of Bimanual Movements in Older Adults
Published: Monday, October 15, 2012
Author: Rachel O. Coats et al.

by Rachel O. Coats, John P. Wann

The ability to interact skilfully with the environment is essential for independent living and therefore a critical factor for the aging population. Here we investigate the differences between young and older adults in a bimanual reaching task where the goal is to bring two objects together to the same location with a synchronous placement. Older (mean age 74) and young (mean age 20) adults were asked to pick up two spatially disparate objects, one in each hand, and bring them together to place them in one of three trays laid out in front of them from left to right. The results showed that the older adults were no more detrimentally affected than the young by asymmetric bimanual movements compared to symmetric ones, and both groups completed their movements in the same time. Nevertheless, compared to the young, the older adult group produced reaches characterised by higher peak velocities (although this effect was marginal), shorter hover times, and where the movement distance varied for each hand the scaling of the kinematic profile across the two limbs diverged from that found with younger participants. They then spent longer than the young in the final adjustment phase and during this phase they made more adjustments than the young, and as a result were more synchronous in terms of the final placement of the objects. It seems that the older adults produced reach movements that were designed to reach the vicinity of the tray quite rapidly, after which time they made discreet adjustments to their initial trajectories in order to exercise the precision necessary to place the objects in the tray. These findings are consistent with the idea that older adults have problems using online control (as they wait until they can fixate both objects before making adjustments).
  More...

 

//-->