BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Critical Care and Emergency Medicine - Neurological Disorders - Pharmacology - Radiology and Medical Imaging

Mobilisation of Hematopoietic CD34+ Precursor Cells in Patients with Acute Stroke Is Safe - Results of an Open-Labeled Non Randomized Phase I/II Trial
Published: Friday, August 26, 2011
Author: Sandra Boy et al.

by Sandra Boy, Sophie Sauerbruch, Mathias Kraemer, Thorsten Schormann, Felix Schlachetzki, Gerhard Schuierer, Ralph Luerding, Burkhard Hennemann, Evelyn Orso, Andreas Dabringhaus, Jürgen Winkler, Ulrich Bogdahn, for the RAIS (Regeneration in Acute Ischemic Stroke) Study Group

Background

Regenerative strategies in the treatment of acute stroke may have great potential. Hematopoietic growth factors mobilize hematopoietic stem cells and may convey neuroprotective effects. We examined the safety, potential functional and structural changes, and CD34+ cell–mobilization characteristics of G-CSF treatment in patients with acute ischemic stroke.

Methods and Results

Three cohorts of patients (8, 6, and 6 patients per cohort) were treated subcutaneously with 2.5, 5, or 10 µg/kg body weight rhG-CSF for 5 consecutive days within 12 hrs of onset of acute stroke. Standard treatment included IV thrombolysis. Safety monitoring consisted of obtaining standardized clinical assessment scores, monitoring of CD34+ stem cells, blood chemistry, serial neuroradiology, and neuropsychology. Voxel-guided morphometry (VGM) enabled an assessment of changes in the patients' structural parenchyma. 20 patients (mean age 55 yrs) were enrolled in this study, 5 of whom received routine thrombolytic therapy with r-tPA. G-CSF treatment was discontinued in 4 patients because of unrelated adverse events. Mobilization of CD34+ cells was observed with no concomitant changes in blood chemistry, except for an increase in the leukocyte count up to 75,500/µl. Neuroradiological and neuropsychological follow-up studies did not disclose any specific G-CSF toxicity. VGM findings indicated substantial atrophy of related hemispheres, a substantial increase in the CSF space, and a localized increase in parenchyma within the ischemic area in 2 patients.

Conclusions

We demonstrate a good safety profile for daily administration of G-CSF when begun within 12 hours after onset of ischemic stroke and, in part in combination with routine IV thrombolysis. Additional analyses using VGM and a battery of neuropsychological tests indicated a positive functional and potentially structural effect of G-CSF treatment in some of our patients.

Trial Registration

German Clinical Trial Register DRKS 00000723

  More...