BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Hematology - Immunology

Comparison of Hematopoietic Stem Cells Derived from Fresh and Cryopreserved Whole Cord Blood in the Generation of Humanized Mice
Published: Thursday, October 11, 2012
Author: Johanna Scholbach et al.

by Johanna Scholbach, Anett Schulz, Florian Westphal, Dietmar Egger, Anja Kathrin Wege, Ina Patties, Margarethe Köberle, Ulrich Sack, Franziska Lange

To study the function and maturation of the human hematopoietic and immune system without endangering individuals, translational human-like animal models are needed. We compare the efficiency of CD34+ stem cells isolated from cryopreserved cord blood from a blood bank (CCB) and fresh cord blood (FCB) in generating highly engrafted humanized mice in NOD-SCID IL2R?null (NSG) rodents. Interestingly, the isolation of CD34+ cells from CCB results in a lower yield and purity compared to FCB. The purity of CD34+ isolation from CCB decreases with an increasing number of mononuclear cells that is not evident in FCB. Despite the lower yield and purity of CD34+ stem cell isolation from CCB compared to FCB, the overall reconstitution with human immune cells (CD45) and the differentiation of its subpopulations e.g., B cells, T cells or monocytes is comparable between both sources. In addition, independent of the cord blood origin, human B cells are able to produce high amounts of human IgM antibodies and human T cells are able to proliferate after stimulation with anti-CD3 antibodies. Nevertheless, T cells generated from FCB showed increased response to restimulation with anti-CD3. Our study reveals that the application of CCB samples for the engraftment of humanized mice does not result in less engraftment or a loss of differentiation and function of its subpopulations. Therefore, CCB is a reasonable alternative to FCB and allows the selection of specific genotypes (or any other criteria), which allows scientists to be independent from the daily changing birth rate.
  More...