BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Immunology - Respiratory Medicine

Obesity Induced by Neonatal Overfeeding Worsens Airway Hyperresponsiveness and Inflammation
Published: Monday, October 08, 2012
Author: Zehui Ye et al.

by Zehui Ye, Ying Huang, Dan Liu, Xiaoyi Chen, Dongjuan Wang, Daochao Huang, Li Zhao, Xiaoqiu Xiao

Background

Obesity is a risk factor for the development of certain respiratory diseases, and neonatal overfeeding results in an early onset of obesity in adulthood. However, the influence of neonatal overfeeding on respiratory diseases has rarely been studied. Therefore, this paper is aimed at investigating the effect of neonatal overfeeding on airway responsiveness and inflammation.

Methodology/Principal Findings

The neonatal overfeeding was induced by reducing litter size to three pups per litter (small litter, SL) in contrast to the normal litter size with ten pups per litter (NL) on postnatal day 3 (P3) in male ICR mice. On P21, mice were weaned to standard chow diet. Airway responsiveness to methacholine was measured either on P21 or P150. Total and classified inflammatory cells in bronchoalveolar lavage fluid (BALF) were counted, lung inflammatory cells were evaluated through staining with hematoxylin & eosin and F4/80 immunohistochemistry; lung fibrosis was evaluated through staining with Masson and a-SAM immunohistochemistry. Leptin levels in serum were measured by RIA; TNF-a levels in serum and BALF were quantified by ELISA; mRNA levels of TNF-a, CTGF and TGF-ß1 in lung tissues were measured using real-time PCR. Mice from SL exhibited accelerated body weight gain, impaired glucose tolerance and hyperleptinemia. Enhanced airway responsiveness to methacholine was observed in SL mice on P150, but not on P21. Pulmonary inflammation was evident in SL mice on P150, as reflected by inflammatory cells especially macrophages around bronchi and interstitium. BALF and serum TNF-a levels and lung TNF-a mRNA expression were significantly increased in SL mice on P150. More collagen accumulated surrounding the bronchi on P150; lung mRNA levels of TGF-ß1 and CTGF were also increased on P150.

Conclusion

In addition to inducing a variety of metabolic defects, neonatal overfeeding enhanced lung inflammation, which may lead to airway remodeling and airway hyperresponsiveness in adulthood.

  More...