BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Oncology - Pathology - Public Health and Epidemiology - Respiratory Medicine

Early Detection of Malignant Pleural Mesothelioma in Asbestos-Exposed Individuals with a Noninvasive Proteomics-Based Surveillance Tool
Published: Wednesday, October 03, 2012
Author: Rachel M. Ostroff et al.

by Rachel M. Ostroff, Michael R. Mehan, Alex Stewart, Deborah Ayers, Edward N. Brody, Stephen A. Williams, Stephen Levin, Brad Black, Michael Harbut, Michele Carbone, Chandra Goparaju, Harvey I. Pass


Malignant pleural mesothelioma (MM) is an aggressive, asbestos-related pulmonary cancer that is increasing in incidence. Because diagnosis is difficult and the disease is relatively rare, most patients present at a clinically advanced stage where possibility of cure is minimal. To improve surveillance and detection of MM in the high-risk population, we completed a series of clinical studies to develop a noninvasive test for early detection.

Methodology/Principal Findings

We conducted multi-center case-control studies in serum from 117 MM cases and 142 asbestos-exposed control individuals. Biomarker discovery, verification, and validation were performed using SOMAmer proteomic technology, which simultaneously measures over 1000 proteins in unfractionated biologic samples. Using univariate and multivariate approaches we discovered 64 candidate protein biomarkers and derived a 13-marker random forest classifier with an AUC of 0.99±0.01 in training, 0.98±0.04 in independent blinded verification and 0.95±0.04 in blinded validation studies. Sensitivity and specificity at our pre-specified decision threshold were 97%/92% in training and 90%/95% in blinded verification. This classifier accuracy was maintained in a second blinded validation set with a sensitivity/specificity of 90%/89% and combined accuracy of 92%. Sensitivity correlated with pathologic stage; 77% of Stage I, 93% of Stage II, 96% of Stage III and 96% of Stage IV cases were detected. An alternative decision threshold in the validation study yielding 98% specificity would still detect 60% of MM cases. In a paired sample set the classifier AUC of 0.99 and 91%/94% sensitivity/specificity was superior to that of mesothelin with an AUC of 0.82 and 66%/88% sensitivity/specificity. The candidate biomarker panel consists of both inflammatory and proliferative proteins, processes strongly associated with asbestos-induced malignancy.


The SOMAmer biomarker panel discovered and validated in these studies provides a solid foundation for surveillance and diagnosis of MM in those at highest risk for this disease.