BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Oncology - Pathology - Urology

Diagnosis of Bladder Cancer Recurrence Based on Urinary Levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 Hypermethylation
Published: Wednesday, October 03, 2012
Author: Thomas Reinert et al.

by Thomas Reinert, Michael Borre, Anders Christiansen, Gregers G. Hermann, Torben F. Ørntoft, Lars Dyrskjøt

Background

Non muscle invasive bladder cancer (NMIBC) has the highest recurrence rate of any malignancy and as many as 70% of patients experience relapse. Aberrant DNA methylation is present in all bladder tumors and can be detected in urine specimens. Previous studies have identified DNA methylation markers that showed significant diagnostic value. We evaluated the significance of the biomarkers for early detection of tumor recurrence in urine.

Methodology/Principal Findings

The methylation levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 in urine specimens were measured by real-time PCR (MethyLight). We analyzed 390 urine sediments from 184 patients diagnosed with NMIBC. Urine from 35 age-matched control individuals was used to determine the methylation baseline levels. Recurrence was diagnosed by cystoscopy and verified by histology. Initially, we compared urine from bladder cancer patients and healthy individuals and detected significant hypermethylation of all six markers (P<0.0001) achieving sensitivity in the range 82%–89% and specificity in the range 94%–100%. Following, we validated the urinary hypermethylation for use in recurrence surveillance and found sensitivities of 88–94% and specificities of 43–67%. EOMES, POU4F2, VIM and ZNF154 were more frequently methylated in urine from patients with higher grade tumors (P=0.08). Univariate Cox regression analysis showed that five markers were significantly associated with disease recurrence; HOXA9 (HR?=?7.8, P?=?0.006), POU4F2 (HR?=?8.5, P?=?0.001), TWIST1 (HR?=?12.0, P?=?0.015), VIM (HR?=?8.0, P?=?0.001), and ZNF154 (HR?=?13.9, P<0.001). Interestingly, for one group of patients (n?=?15) we found that hypermethylation was consistently present in the urine samples despite the lack of tumor recurrences, indicating the presence of a field defect.

Conclusion/Significance

Methylation levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 in urine specimens are promising diagnostic biomarkers for bladder cancer recurrence surveillance.

  More...