BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Immunology - Infectious Diseases - Physiology - Respiratory Medicine

Respiratory Syncytial Virus Reverses Airway Hyperresponsiveness to Methacholine in Ovalbumin-Sensitized Mice
Published: Tuesday, October 02, 2012
Author: Famke Aeffner et al.

by Famke Aeffner, Ian C. Davis

Each year, approximately 20% of asthmatics in the United States experience acute symptom exacerbations, which commonly result from pulmonary viral infections. The majority of asthma exacerbations in very young children follow infection with respiratory syncytial virus (RSV). However, pathogenic mechanisms underlying induction of asthma exacerbations by RSV are not well understood. We therefore investigated the effect of post-sensitization RSV infection on lung function in ovalbumin (OVA)-sensitized BALB/c mice as a model of RSV asthma exacerbations. OVA sensitization of uninfected female BALB/c mice increased bronchoalveolar lavage fluid (BALF) eosinophil levels and induced airway hyperresponsiveness to the muscarinic agonist methacholine, as measured by the forced-oscillation technique. In contrast, intranasal infection with replication-competent RSV strain A2 for 2–8 days reduced BALF eosinophil counts and reversed airway hyperresponsiveness in a pertussis toxin-sensitive manner. BALF levels of the chemokine keratinocyte cytokine (KC; a murine homolog of interleukin-8) were elevated in OVA-sensitized, RSV-infected mice and reversal of methacholine hyperresponsiveness in these animals was rapidly inhibited by KC neutralization. Hyporesponsiveness could be induced in OVA-sensitized, uninfected mice by recombinant KC or the Gai agonist melittin. These data suggest that respiratory syncytial virus induces KC-mediated activation of Gai, resulting in cross-inhibition of Gaq-mediated M3-muscarinic receptor signaling and reversal of airway hyperresponsiveness. As in unsensitized mice, KC therefore appears to play a significant role in induction of airway dysfunction by respiratory syncytial virus. Hence, interleukin-8 may be a promising therapeutic target to normalize lung function in both asthmatics and non-asthmatics with bronchiolitis. However, the OVA-sensitized, RSV-infected mouse may not be an appropriate model for investigating the pathogenesis of viral asthma exacerbations.
  More...