BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Critical Care and Emergency Medicine - Immunology - Physiology

Neutralisation of Peritoneal IL-17A Markedly Improves the Prognosis of Severe Septic Mice by Decreasing Neutrophil Infiltration and Proinflammatory Cytokines
Published: Tuesday, October 02, 2012
Author: Jinbao Li et al.

by Jinbao Li, Yan Zhang, Jingsheng Lou, Jiali Zhu, Miaoxia He, Xiaoming Deng, Zailong Cai

Purpose

The current study aimed to elucidate the role of peritoneal fluid IL-17A in septic mice, and the effects of intraperitoneal or intravenous blockade of the IL-17A pathway by anti-IL17A antibody on survival, plasma, and peritoneal cavity cytokine profile in a murine caecal ligation and puncture (CLP) sepsis model. The main source of peritoneal fluid IL-17A in septic mice was identified.

Methods

Male C57BL/6 mice that underwent severe CLP or sham surgery were intraperitoneally or intravenously administered anti-IL17A antibodies or isotype antibodies. The survival rates were observed. IL-17A, TNF-a, and IL-6 cytokine levels were measured by ELISA. Surface and intracellular IL-17A immunofluorescence stains were detected by flow cytometry to identify the IL-17A–producing cells.

Results

The IL-17A level was elevated much higher and earlier in peritoneal fluid than in the blood of the CLP mice. The intraperitoneal IL-17A blockade more significantly protects against CLP-induced mortality than intravenous blockade because of decreased TNF-a and IL-6 levels both in peritoneal fluid and blood, neutrophil infiltration in the peritoneal cavity, and lung injury. ?d T lymphocytes were identified to be the main source of IL-17A in the peritoneal fluid of septic mice.

Conclusions

The earlier and higher elevated IL-17A derived from ?d T cells in peritoneal fluid plays a critical role during polymicrobial severe sepsis and effect of intraperitoneal IL-17A antibody administration superior to intravenous administration on survival of severe CLP-induced septic mice. The intraperitoneal blockade of IL-17A decreases proinflammatory cytokine production, neutrophil infiltration, and lung injury, thereby improving septic mice survival, which provides a new potential therapy target for sepsis.

  More...

 

//-->