BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Hematology - Oncology - Pharmacology

In Silico Investigations of the Anti-Catabolic Effects of Pamidronate and Denosumab on Multiple Myeloma-Induced Bone Disease
Published: Friday, September 21, 2012
Author: Yan Wang et al.

by Yan Wang, Bo Lin

It is unclear whether the new anti-catabolic agent denosumab represents a viable alternative to the widely used anti-catabolic agent pamidronate in the treatment of Multiple Myeloma (MM)-induced bone disease. This lack of clarity primarily stems from the lack of sufficient clinical investigations, which are costly and time consuming. However, in silico investigations require less time and expense, suggesting that they may be a useful complement to traditional clinical investigations. In this paper, we aim to (i) develop integrated computational models that are suitable for investigating the effects of pamidronate and denosumab on MM-induced bone disease and (ii) evaluate the responses to pamidronate and denosumab treatments using these integrated models. To achieve these goals, pharmacokinetic models of pamidronate and denosumab are first developed and then calibrated and validated using different clinical datasets. Next, the integrated computational models are developed by incorporating the simulated transient concentrations of pamidronate and denosumab and simulations of their actions on the MM-bone compartment into the previously proposed MM-bone model. These integrated models are further calibrated and validated by different clinical datasets so that they are suitable to be applied to investigate the responses to the pamidronate and denosumab treatments. Finally, these responses are evaluated by quantifying the bone volume, bone turnover, and MM-cell density. This evaluation identifies four denosumab regimes that potentially produce an overall improved bone-related response compared with the recommended pamidronate regime. This in silico investigation supports the idea that denosumab represents an appropriate alternative to pamidronate in the treatment of MM-induced bone disease.