BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Anesthesiology and Pain Management - Immunology - Physiology - Surgery

Cardiopulmonary Bypass during Cardiac Surgery Modulates Systemic Inflammation by Affecting Different Steps of the Leukocyte Recruitment Cascade
Published: Wednesday, September 19, 2012
Author: Jan Rossaint et al.

by Jan Rossaint, Christian Berger, Hugo Van Aken, Hans H. Scheld, Peter K. Zahn, Andreas Rukosujew, Alexander Zarbock

Background

It is known that the use of a cardiopulmonary bypass (CPB) during cardiac surgery leads to leukocyte activation and may, among other causes, induce organ dysfunction due to increased leukocyte recruitment into different organs. Leukocyte extravasation occurs in a cascade-like fashion, including capturing, rolling, adhesion, and transmigration. However, the molecular mechanisms of increased leukocyte recruitment caused by CPB are not known. This clinical study was undertaken in order to investigate which steps of the leukocyte recruitment cascade are affected by the systemic inflammation during CPB.

Methods

We investigated the effects of CPB on the different steps of the leukocyte recruitment cascade in whole blood from healthy volunteers (n?=?9) and patients undergoing cardiac surgery with the use of cardiopulmonary bypass (n?=?7) or in off-pump coronary artery bypass-technique (OPCAB, n?=?9) by using flow chamber experiments, transmigration assays, and biochemical analysis.

Results

CPB abrogated selectin-induced slow leukocyte rolling on E-selectin/ICAM-1 and P-selectin/ICAM-1. In contrast, chemokine-induced arrest and transmigration was significantly increased by CPB. Mechanistically, the abolishment of slow leukocyte rolling was due to disturbances in intracellular signaling with reduced phosphorylation of phospholipase C (PLC) ?2, Akt, and p38 MAP kinase. Furthermore, CPB induced an elevated transmigration which was caused by upregulation of Mac-1 on neutrophils.

Conclusion

These data suggest that CPB abrogates selectin-mediated slow leukocyte rolling by disturbing intracellular signaling, but that the clinically observed increased leukocyte recruitment caused by CPB is due to increased chemokine-induced arrest and transmigration. A better understanding of the underlying molecular mechanisms causing systemic inflammation after CPB may aid in the development of new therapeutic approaches.

  More...

 

//-->