BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Computer Science - Radiology and Medical Imaging - Respiratory Medicine

Longitudinal Study of Spatially Heterogeneous Emphysema Progression in Current Smokers with Chronic Obstructive Pulmonary Disease
Published: Tuesday, September 18, 2012
Author: Naoya Tanabe et al.

by Naoya Tanabe, Shigeo Muro, Susumu Sato, Shiro Tanaka, Tsuyoshi Oguma, Hirofumi Kiyokawa, Tamaki Takahashi, Daisuke Kinose, Yuma Hoshino, Takeshi Kubo, Toyohiro Hirai, Michiaki Mishima

Background

Cigarette smoke is the main risk factor for emphysema, which is a key pathology in chronic obstructive pulmonary disease (COPD). Low attenuation areas (LAA) in computed tomography (CT) images reflect emphysema, and the cumulative size distribution of LAA clusters follows a power law characterized by the exponent D. This property of LAA clusters can be explained by model simulation, where mechanical force breaks alveolar walls causing local heterogeneous lung tissue destruction. However, a longitudinal CT study has not investigated whether continuous smoking causes the spatially heterogeneous progression of emphysema.

Methods

We measured annual changes in ratios of LAA (LAA%), D and numbers of LAA clusters (LAN) in CT images acquired at intervals of =3 years from 22 current and 31 former smokers with COPD to assess emphysema progression. We constructed model simulations using CT images to morphologically interpret changes in current smokers.

Results

D was decreased in current and former smokers, whereas LAA% and LAN were increased only in current smokers. The annual changes in LAA%, D, and LAN were greater in current, than in former smokers (1.03 vs. 0.37%, p?=?0.008; -0.045 vs. -0.01, p?=?0.004; 13.9 vs. 1.1, p?=?0.007, respectively). When LAA% increased in model simulations, the coalescence of neighboring LAA clusters decreased D, but the combination of changes in D and LAN in current smokers could not be explained by the homogeneous emphysema progression model despite cluster coalescence. Conversely, a model in which LAAs heterogeneously increased and LAA clusters merged somewhat in relatively advanced emphysematous regions could reflect actual changes.

Conclusions

Susceptibility to parenchymal destruction induced by continuous smoking is not uniform over the lung, but might be higher in local regions of relatively advanced emphysema. These could result in the spatially heterogeneous progression of emphysema in current smokers.

  More...

 

//-->